- [创业之路-484]:企业经营层 - 职场人如何识别积极的工作环境:信任机制:从「分工协作」到「全能防御」;目标聚焦:从「价值创造」到「风险规避」;系统进化:从「熵减秩序」到「熵增混乱」。
前言:在一个分工明确安全可靠公平化的系统中,每个人只需要认真完成自己的目标,把其他环节交给受信任的队友,技术人只要关注技术,不需要防范被别人算计和坑害或吃亏。在一个不可靠不安全人治危机四伏的系统中,每个人不仅需要完成自己的目标,还需要把自己变成全才,以避免自己的付出在脱节的环节被淹没,还要关注各种无关的隐情,以避免在信息不对称时别忽悠,技术人员不仅仅要关注技术,还要人事,以防止一不小心暗算与坑害。
- 深度学习相关指标工作笔记
Victor Zhong
AI框架深度学习笔记人工智能
这里写目录标题检测指标iou/Gou/Diou/CiouMSE(MeanSquaredError)(均方误差)(回归问题)交叉熵损失函数(CrossEntropyErrorFunction)(分类问题)检测指标iou/Gou/Diou/CiouIntersectionoverUnion(IoU)是目标检测里一种重要的评价值交并比令人遗憾的是IoU无法优化无重叠的bboxes如果用IoU作为loss
- 交叉熵损失和负熵似然损失(对分类器有用)
流量留
深度学习人工智能机器学习算法
1.**交叉熵损失(Cross-EntropyLoss)**-**定义**-交叉熵损失是用来衡量分类模型输出的概率分布与真实标签的概率分布之间的差异。假设对于一个分类任务,有\(C\)个类别,模型对第\(i\)个样本的输出是一个概率分布\(\mathbf{p}_i=[p_{i1},p_{i2},\dots,p_{iC}]\),其中\(p_{ic}\)表示模型预测样本属于第\(c\)类的概率。真实标
- Python Day53
别勉.
python机器学习python开发语言
Task:1.对抗生成网络的思想:关注损失从何而来2.生成器、判别器3.nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法4.leakyReLU介绍:避免relu的神经元失活现象1.对抗生成网络的思想:关注损失从何而来这是理解GANs的关键!传统的神经网络训练中,我们通常会直接定义一个损失函数(如均方误差MSE、交叉熵CE),然后通过反向传播来优化这个损失。这个损失的“来源”
- . 生命 .
lyx 弈心
写作思考
万物有灵,要说生命几许,兴许每一个生灵,如今曾经,都诉说着意义。兴许无穷的时间以前,一切都不曾有意义。我们从不知道时间是什么,它与熵诉说着相同的单向性,却无从知晓,这洪荒的规则究竟来自哪里。它仿佛数轴上的点,无法穷尽。零至一上的点便与整个数轴上的点有这相同的数量,仿若时间,瞬间便是永恒,而永恒,存在于个体诉说它的一瞬。个体怎会知晓究竟生命何许,便去抓住那时间里的意义。给时间以生命,而非给生命以时间
- C2远控篇&Golang&Rust&冷门语言&Loader加载器&对抗优势&减少熵值特征
#C2远控-ShellCode-认知&环境1.创建工程时关闭SDL检查2.属性->C/C++->代码生成->运行库->多线程(/MT)如果是debug则设置成MTD3.属性->C/C++->代码生成->禁用安全检查GS4.关闭生成清单属性->链接器->清单文件->生成清单选择否#C2远控-ShellCode-分析&提取ShellCode的本质其实就是一段可以自主运行的代码。它没有任何文件结构,它不
- 从 “啃书焦虑” 到 “项目通关”:NLP 学习的破局之道
木旭林晖
自然语言处理学习人工智能
嘿,你好。在CSDN上潜水这么久,我总能看到很多像你我当年一样,怀揣着NLP大厂梦的同学。我猜,你的收藏夹里一定塞满了“NLP必读清单”,书架上可能还放着那本厚得像砖头一样的《统计学习方法》或者“龙书”。每天深夜,你可能都在跟一个又一个复杂的数学公式死磕。什么最大熵模型、什么CRF(条件随机场)的推导……你觉得自己离“精通”越来越近,但心里却越来越慌。为什么慌?因为你打开招聘软件,看到JD(职位描
- 【重构推荐系统】国产大模型驱动的电商个性化推荐完整实战:架构设计、推理优化与在线部署闭环
观熵
国产大模型部署实战全流程指南重构人工智能Agent智能体落地方案
个人简介作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与Agent架构设计。热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。我叫观熵。不是在控熵,就是在观测熵的流动个人主页:观熵个人邮箱:
[email protected]座右铭:愿科技之光,不止照亮智能,也照亮人心!专栏导航观熵系列专栏导航:AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到
- Pyeeg模块部分功能介绍
脑电情绪识别
脑电情绪识别python神经网络深度学习pycharm
1.pyeeg简单介绍PyEEG是一个Python模块(即函数库),用于提取EEG(脑电)特征。正在添加更多功能。它包含构建用于特征提取的数据的函数,例如从给定的时间序列构建嵌入序列。它还能够将功能导出为svmlight格式,以便调用机器学习及深度学习工具。2.部分函数介绍1.pyeeg.ap_entropy(X,M,R)pyeeg.ap_entropy(X, M, R)计算时间序列X的近似熵(A
- 熵增定律与人际关系-整理
吾883721
模型及认知学习
01.什么是熵增定律?熵增定律的定义十分简单:在一个孤立系统里,如果没有外力做功,其总混乱度(即熵)会不断增大。这项定义里有三个关键词:孤立系统、无外力做功、总混乱度(熵)。熵增定律被称为最让人沮丧的定律,它不仅预示了宇宙终将归于热寂,生命终将消失,而从小的方面来说,它也揭示了我们许多人性的弱点:安于现状,害怕变化,难以坚持,难以自律,不爱思考,说话做事逻辑混乱,缺乏原则......02.整个生命
- 深入解析ID3算法:信息熵驱动的决策树构建基石
大千AI助手
人工智能Python#OTHER算法决策树机器学习人工智能DecisionTreeID3信息熵
本文来自「大千AI助手」技术实战系列,专注用真话讲技术,拒绝过度包装。ID3(IterativeDichotomiser3)是机器学习史上的里程碑算法,由RossQuinlan于1986年提出。它首次将信息论引入决策树构建,奠定了现代决策树的理论基础。本文将深入剖析其数学本质与实现细节。往期文章推荐:20.用Mermaid代码画ER图:AI时代的数据建模利器19.ER图:数据库设计的可视化语言-搞
- MATLAB实现基于基元共生矩阵的纹理特征提取方法
杏花朵朵
本文还有配套的精品资源,点击获取简介:纹理特征提取在图像处理中对于模式识别和分类等应用至关重要。本文将详细介绍如何在MATLAB中使用基元共生矩阵(PCM)来提取图像的纹理特征。基元共生矩阵通过统计像素对在特定距离和方向上的相对位置关系来描述纹理的局部结构。本方法首先定义不同的方格和方向,然后计算共生矩阵,并从中提取出对比度、能量、熵、相关性等统计特征。最后,这些统计特征被组合成特征向量,用于图像
- 理解自信息和信息熵——为什么自信息这样算?
Colin_Downey
随笔信息熵机器学习概率论
一直对香农的信息熵(InformationEntropy)都没有一个非常感性的认识,今日摸鱼学习了一下这个问题。我们先来看看香农是怎么看待交流中的“信息”:“Thefundamentalproblemofcommunicationisthatofreproducingatonepointeitherexactlyorapproximatelyamessageselectedatanotherpoi
- 从语言行为到调用协议:智能体通信的五种底层格式
观熵
AgenticAI架构实战全流程人工智能智能体
个人简介作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与Agent架构设计。热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。我叫观熵。不是在控熵,就是在观测熵的流动个人主页:观熵个人邮箱:
[email protected]座右铭:愿科技之光,不止照亮智能,也照亮人心!专栏导航观熵系列专栏导航:AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到
- MSE做多分类任务如何
用「考试打分」来类比,秒懂为啥多分类任务很少用MSE,以及硬用会出啥问题~一、多分类任务的「常规操作」:交叉熵vsMSE1.多分类任务长啥样?例子:手写数字识别(0-9共10类)、动物图片分类(猫/狗/鸟等)。目标:模型输出每个类别的概率,选概率最高的作为预测结果。2.交叉熵为啥是「标配」?输出:配合softmax激活函数,输出每个类别的概率(和为1)。判卷逻辑:看「预测概率是否接近真实类别」,比
- 打造可控可信的智能体调度核心:MCP 中控协议架构实战与服务端实现
观熵
AgenticAI架构实战全流程架构人工智能智能体AgentMCP
个人简介作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与Agent架构设计。热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。我叫观熵。不是在控熵,就是在观测熵的流动个人主页:观熵个人邮箱:
[email protected]座右铭:愿科技之光,不止照亮智能,也照亮人心!专栏导航观熵系列专栏导航:AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到
- 逻辑回归中的损失函数:交叉熵损失详解与推导
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶逻辑回归算法机器学习ai
逻辑回归中的损失函数:交叉熵损失详解与推导关键词:逻辑回归、交叉熵损失、损失函数、二分类、多分类、极大似然估计、梯度下降摘要:本文深入解析逻辑回归中核心的交叉熵损失函数,从信息论基础出发,逐步推导二分类与多分类场景下的损失函数形式,结合极大似然估计揭示其理论本质。通过Python代码实现损失函数计算与梯度推导,辅以实战案例演示完整训练流程。同时对比均方误差等其他损失函数,阐释交叉熵在分类问题中的独
- Multi-Agent 任务协同架构实战:构建智能体角色分工与调度机制
观熵
AgenticAI架构实战全流程FoundationAgent架构人工智能智能体Agent
个人简介作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与Agent架构设计。热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。我叫观熵。不是在控熵,就是在观测熵的流动个人主页:观熵个人邮箱:
[email protected]座右铭:愿科技之光,不止照亮智能,也照亮人心!专栏导航观熵系列专栏导航:AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到
- 机器学习与深度学习21-信息论
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.信息上的概念2.相对熵是什么3.互信息是什么4.条件熵和条件互信息5.最大熵模型6.信息增益与基尼不纯度前文回顾上一篇文章链接:地址1.信息上的概念信息熵(Entropy)是信息理论中用于度量随机变量不确定性的概念。它表示了对一个随机事件发生的预测的平均困惑程度或信息量。对于一个离散型随机变量X,其信息熵H(X)定义为所有可能取值的负概率加权平均。数学上,可以使用以下公式来计算离散
- 多分类与多标签分类的损失函数
麦格芬230
自然语言处理
使用神经网络处理多分类任务时,一般采用softmax作为输出层的激活函数,使用categorical_crossentropy(多类别交叉熵损失函数)作为损失函数,输出层包含k个神经元对应k个类别。在多标签分类任务中,一般采用sigmoid作为输出层的激活函数,使用binary_crossentropy(二分类交叉熵损失函数)作为损失函数,就是将最后分类层的每个输出节点使用sigmoid激活函数激
- 【AI论文】超越80/20规则:高熵少数令牌驱动LLM推理的有效强化学习
东临碣石82
人工智能
摘要:具有可验证奖励的强化学习(RLVR)已经成为一种增强大型语言模型(LLM)推理能力的强大方法,但其机制尚未得到很好的理解。在这项工作中,我们通过标记熵模式的新视角对RLVR进行了开创性的探索,全面分析了不同标记如何影响推理性能。通过检查思想链(CoT)推理中的标记熵模式,我们观察到只有一小部分标记表现出高熵,这些标记充当关键分叉,引导模型朝向不同的推理路径。此外,研究RLVR训练过程中熵模式
- 生成对抗网络(GAN)基础原理深度解析:从直观理解到形式化表达
青柚MATLAB学习
对抗网络生成对抗网络GAN生成器判别器目标函数交叉熵损失
摘要本文详细解析生成对抗网络(GAN)的核心原理,从通俗类比入手,结合印假钞与警察博弈的案例阐述生成器与判别器的对抗机制;通过模型结构示意图,解析噪声采样、样本生成及判别流程;基于公式推导目标函数的数学本质,剖析判别器与生成器的优化逻辑;最后对比GAN目标函数与交叉熵损失的关联差异。本文结合公式推导与概念对比,助力读者建立GAN基础理论体系。关键词:生成对抗网络GAN生成器判别器目标函数交叉熵损失
- Qwen2.5-Omni 多模态部署保姆级教程:图文问答×接口调用×Gradio UI 全都有
观熵
国产大模型部署实战全流程指南ui人工智能通义千问大模型封装深度学习
个人简介作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与Agent架构设计。热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。我叫观熵。不是在控熵,就是在观测熵的流动个人主页:观熵个人邮箱:
[email protected]座右铭:愿科技之光,不止照亮智能,也照亮人心!专栏导航观熵系列专栏导航:AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到
- 强化学习的前世今生(五)— SAC算法
小于小于大橙子
算法概率论强化学习人工智能自动驾驶AI
书接前四篇强化学习的前世今生(一)强化学习的前世今生(二)强化学习的前世今生(三)—PPO算法强化学习的前世今生(四)—DDPG算法本文为大家介绍SAC算法7SAC7.1最大熵强化学习在信息论中,熵(entropy)是用来衡量一个随机变量不确定性大小的度量,对于一个随机变量XXX,其定义为H(X)=Ex∼p(x)[−logp(x)](7.1)\begin{align*}H(X)&=\mathbb
- 高光谱成像相机:基于高光谱成像技术的玉米种子纯度检测研究
中达瑞和-高光谱·多光谱
相机
种子纯度是衡量种子质量的核心指标之一,直接影响农作物产量与品质。传统检测方法(如形态学观察、生化分析)存在耗时长、破坏样本、依赖人工等缺陷。近年来,高光谱成像技术因其融合光谱与图像信息的优势,成为无损检测领域的研究热点。中达瑞和作为国内高光谱成像设备的领先供应商,可实现国产替代,助力科研院校进行高光谱成像领域的研究和探索。本研究基于高光谱相机,结合图像熵特征与机器学习算法,实现了多品种玉米种子的快
- GRPO / PPO / DPO 在医疗场景下的 LLM 优化与源码实战分析
观熵
AgenticAI架构实战全流程人工智能智能体Agent
个人简介作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与Agent架构设计。热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。我叫观熵。不是在控熵,就是在观测熵的流动个人主页:观熵个人邮箱:
[email protected]座右铭:愿科技之光,不止照亮智能,也照亮人心!专栏导航观熵系列专栏导航:AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到
- 头歌实践教学平台python机器学习-决策树
学习只是用户态
1024程序员节
决策树简述下列说法正确的是?A、训练决策树的过程就是构建决策树的过程B、ID3算法是根据信息增益来构建决策树下列说法错误的是?B、决策树只能是一棵二叉树决策树算法任务描述本关任务:编写一个使用决策树算法进行信息增益计算及结点划分的程序。相关知识为了完成本关任务,你需要掌握:1.决策树模型,2.决策树模型用于分类,3.决策树信息熵构建。决策树模型决策树(DecisionTree)是在已知各种情况发生
- ACS ANM突破:微波一步法合成多孔吸波材料——焦耳加热技术如何赋能材料创新?
焦耳加热
能源材料工程自动化人工智能大数据
一、技术解读:哈工大微波一步法的核心创新哈尔滨工业大学团队在ACSAppliedNanoMaterials的最新研究中,通过微波瞬时加热法(MIT)成功制备多孔高熵合金/碳纤维复合材料,其核心突破为:超快速合成:10秒内完成金属盐分解、多孔结构构筑与合金纳米化(图1a);性能优势:密度仅0.157g/cm³,有效吸收带宽5.5GHz(2-18GHz),耐腐蚀性提升3倍;机制创新:Al元素表面偏析(
- Off-Policy策略演员评论家算法SAC详解:python从零实现
AI仙人掌
复现强化学习RL算法算法python人工智能数据挖掘深度学习RL
引言软演员评论家(SAC)是一种最先进的Off-Policy策略演员评论家算法,专为连续动作空间设计。它在DDPG、TD3的基础上进行了显著改进,并引入了最大熵强化学习的原则。其目标是学习一种策略,不仅最大化预期累积奖励,还要最大化策略的熵。这种添加鼓励了探索,提高了对噪声的鲁棒性,通常与之前的DDPG和TD3方法相比,能够实现更快、更稳定的学习。SAC是什么?SAC学习三个主要组件(通常使用五个
- 基于Huber函数和最大相关熵的抗差滤波算法
bubiyoushang888
matlab
最大熵滤波(MaximumEntropyFiltering)常用于信号处理中的谱估计和噪声抑制,尤其适用于短数据序列的高分辨率谱分析。一、最大熵滤波算法原理核心思想:在满足已知自相关函数约束的条件下,使信号的熵最大化。数学形式:通过自回归(AR)模型对信号建模,估计模型参数(滤波器系数)。关键公式:自回归模型:x(n)=−∑k=1pap(k)x(n−k)+w(n)x(n)=-\sum_{k=1}^
- java短路运算符和逻辑运算符的区别
3213213333332132
java基础
/*
* 逻辑运算符——不论是什么条件都要执行左右两边代码
* 短路运算符——我认为在底层就是利用物理电路的“并联”和“串联”实现的
* 原理很简单,并联电路代表短路或(||),串联电路代表短路与(&&)。
*
* 并联电路两个开关只要有一个开关闭合,电路就会通。
* 类似于短路或(||),只要有其中一个为true(开关闭合)是
- Java异常那些不得不说的事
白糖_
javaexception
一、在finally块中做数据回收操作
比如数据库连接都是很宝贵的,所以最好在finally中关闭连接。
JDBCAgent jdbc = new JDBCAgent();
try{
jdbc.excute("select * from ctp_log");
}catch(SQLException e){
...
}finally{
jdbc.close();
- utf-8与utf-8(无BOM)的区别
dcj3sjt126com
PHP
BOM——Byte Order Mark,就是字节序标记 在UCS 编码中有一个叫做"ZERO WIDTH NO-BREAK SPACE"的字符,它的编码是FEFF。而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中。UCS规范建议我们在传输字节流前,先传输 字符"ZERO WIDTH NO-BREAK SPACE"。这样如
- JAVA Annotation之定义篇
周凡杨
java注解annotation入门注释
Annotation: 译为注释或注解
An annotation, in the Java computer programming language, is a form of syntactic metadata that can be added to Java source code. Classes, methods, variables, pa
- tomcat的多域名、虚拟主机配置
g21121
tomcat
众所周知apache可以配置多域名和虚拟主机,而且配置起来比较简单,但是项目用到的是tomcat,配来配去总是不成功。查了些资料才总算可以,下面就跟大家分享下经验。
很多朋友搜索的内容基本是告诉我们这么配置:
在Engine标签下增面积Host标签,如下:
<Host name="www.site1.com" appBase="webapps"
- Linux SSH 错误解析(Capistrano 的cap 访问错误 Permission )
510888780
linuxcapistrano
1.ssh -v
[email protected] 出现
Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).
错误
运行状况如下:
OpenSSH_5.3p1, OpenSSL 1.0.1e-fips 11 Feb 2013
debug1: Reading configuratio
- log4j的用法
Harry642
javalog4j
一、前言: log4j 是一个开放源码项目,是广泛使用的以Java编写的日志记录包。由于log4j出色的表现, 当时在log4j完成时,log4j开发组织曾建议sun在jdk1.4中用log4j取代jdk1.4 的日志工具类,但当时jdk1.4已接近完成,所以sun拒绝使用log4j,当在java开发中
- mysql、sqlserver、oracle分页,java分页统一接口实现
aijuans
oraclejave
定义:pageStart 起始页,pageEnd 终止页,pageSize页面容量
oracle分页:
select * from ( select mytable.*,rownum num from (实际传的SQL) where rownum<=pageEnd) where num>=pageStart
sqlServer分页:
 
- Hessian 简单例子
antlove
javaWebservicehessian
hello.hessian.MyCar.java
package hessian.pojo;
import java.io.Serializable;
public class MyCar implements Serializable {
private static final long serialVersionUID = 473690540190845543
- 数据库对象的同义词和序列
百合不是茶
sql序列同义词ORACLE权限
回顾简单的数据库权限等命令;
解锁用户和锁定用户
alter user scott account lock/unlock;
//system下查看系统中的用户
select * dba_users;
//创建用户名和密码
create user wj identified by wj;
identified by
//授予连接权和建表权
grant connect to
- 使用Powermock和mockito测试静态方法
bijian1013
持续集成单元测试mockitoPowermock
实例:
package com.bijian.study;
import static org.junit.Assert.assertEquals;
import java.io.IOException;
import org.junit.Before;
import org.junit.Test;
import or
- 精通Oracle10编程SQL(6)访问ORACLE
bijian1013
oracle数据库plsql
/*
*访问ORACLE
*/
--检索单行数据
--使用标量变量接收数据
DECLARE
v_ename emp.ename%TYPE;
v_sal emp.sal%TYPE;
BEGIN
select ename,sal into v_ename,v_sal
from emp where empno=&no;
dbms_output.pu
- 【Nginx四】Nginx作为HTTP负载均衡服务器
bit1129
nginx
Nginx的另一个常用的功能是作为负载均衡服务器。一个典型的web应用系统,通过负载均衡服务器,可以使得应用有多台后端服务器来响应客户端的请求。一个应用配置多台后端服务器,可以带来很多好处:
负载均衡的好处
增加可用资源
增加吞吐量
加快响应速度,降低延时
出错的重试验机制
Nginx主要支持三种均衡算法:
round-robin
l
- jquery-validation备忘
白糖_
jquerycssF#Firebug
留点学习jquery validation总结的代码:
function checkForm(){
validator = $("#commentForm").validate({// #formId为需要进行验证的表单ID
errorElement :"span",// 使用"div"标签标记错误, 默认:&
- solr限制admin界面访问(端口限制和http授权限制)
ronin47
限定Ip访问
solr的管理界面可以帮助我们做很多事情,但是把solr程序放到公网之后就要限制对admin的访问了。
可以通过tomcat的http基本授权来做限制,也可以通过iptables防火墙来限制。
我们先看如何通过tomcat配置http授权限制。
第一步: 在tomcat的conf/tomcat-users.xml文件中添加管理用户,比如:
<userusername="ad
- 多线程-用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
bylijinnan
java多线程
public class IncDecThread {
private int j=10;
/*
* 题目:用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
* 两个问题:
* 1、线程同步--synchronized
* 2、线程之间如何共享同一个j变量--内部类
*/
public static
- 买房历程
cfyme
2015-06-21: 万科未来城,看房子
2015-06-26: 办理贷款手续,贷款73万,贷款利率5.65=5.3675
2015-06-27: 房子首付,签完合同
2015-06-28,央行宣布降息 0.25,就2天的时间差啊,没赶上。
首付,老婆找他的小姐妹接了5万,另外几个朋友借了1-
- [军事与科技]制造大型太空战舰的前奏
comsci
制造
天气热了........空调和电扇要准备好..........
最近,世界形势日趋复杂化,战争的阴影开始覆盖全世界..........
所以,我们不得不关
- dateformat
dai_lm
DateFormat
"Symbol Meaning Presentation Ex."
"------ ------- ------------ ----"
"G era designator (Text) AD"
"y year
- Hadoop如何实现关联计算
datamachine
mapreducehadoop关联计算
选择Hadoop,低成本和高扩展性是主要原因,但但它的开发效率实在无法让人满意。
以关联计算为例。
假设:HDFS上有2个文件,分别是客户信息和订单信息,customerID是它们之间的关联字段。如何进行关联计算,以便将客户名称添加到订单列表中?
&nbs
- 用户模型中修改用户信息时,密码是如何处理的
dcj3sjt126com
yii
当我添加或修改用户记录的时候对于处理确认密码我遇到了一些麻烦,所有我想分享一下我是怎么处理的。
场景是使用的基本的那些(系统自带),你需要有一个数据表(user)并且表中有一个密码字段(password),它使用 sha1、md5或其他加密方式加密用户密码。
面是它的工作流程: 当创建用户的时候密码需要加密并且保存,但当修改用户记录时如果使用同样的场景我们最终就会把用户加密过的密码再次加密,这
- 中文 iOS/Mac 开发博客列表
dcj3sjt126com
Blog
本博客列表会不断更新维护,如果有推荐的博客,请到此处提交博客信息。
本博客列表涉及的文章内容支持 定制化Google搜索,特别感谢 JeOam 提供并帮助更新。
本博客列表也提供同步更新的OPML文件(下载OPML文件),可供导入到例如feedly等第三方定阅工具中,特别感谢 lcepy 提供自动转换脚本。这里有导入教程。
- js去除空格,去除左右两端的空格
蕃薯耀
去除左右两端的空格js去掉所有空格js去除空格
js去除空格,去除左右两端的空格
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>&g
- SpringMVC4零配置--web.xml
hanqunfeng
springmvc4
servlet3.0+规范后,允许servlet,filter,listener不必声明在web.xml中,而是以硬编码的方式存在,实现容器的零配置。
ServletContainerInitializer:启动容器时负责加载相关配置
package javax.servlet;
import java.util.Set;
public interface ServletContainer
- 《开源框架那些事儿21》:巧借力与借巧力
j2eetop
框架UI
同样做前端UI,为什么有人花了一点力气,就可以做好?而有的人费尽全力,仍然错误百出?我们可以先看看几个故事。
故事1:巧借力,乌鸦也可以吃核桃
有一个盛产核桃的村子,每年秋末冬初,成群的乌鸦总会来到这里,到果园里捡拾那些被果农们遗落的核桃。
核桃仁虽然美味,但是外壳那么坚硬,乌鸦怎么才能吃到呢?原来乌鸦先把核桃叼起,然后飞到高高的树枝上,再将核桃摔下去,核桃落到坚硬的地面上,被撞破了,于是,
- JQuery EasyUI 验证扩展
可怜的猫
jqueryeasyui验证
最近项目中用到了前端框架-- EasyUI,在做校验的时候会涉及到很多需要自定义的内容,现把常用的验证方式总结出来,留待后用。
以下内容只需要在公用js中添加即可。
使用类似于如下:
<input class="easyui-textbox" name="mobile" id="mobile&
- 架构师之httpurlconnection----------读取和发送(流读取效率通用类)
nannan408
1.前言.
如题.
2.代码.
/*
* Copyright (c) 2015, S.F. Express Inc. All rights reserved.
*/
package com.test.test.test.send;
import java.io.IOException;
import java.io.InputStream
- Jquery性能优化
r361251
JavaScriptjquery
一、注意定义jQuery变量的时候添加var关键字
这个不仅仅是jQuery,所有javascript开发过程中,都需要注意,请一定不要定义成如下:
$loading = $('#loading'); //这个是全局定义,不知道哪里位置倒霉引用了相同的变量名,就会郁闷至死的
二、请使用一个var来定义变量
如果你使用多个变量的话,请如下方式定义:
. 代码如下:
var page
- 在eclipse项目中使用maven管理依赖
tjj006
eclipsemaven
概览:
如何导入maven项目至eclipse中
建立自有Maven Java类库服务器
建立符合maven代码库标准的自定义类库
Maven在管理Java类库方面有巨大的优势,像白衣所说就是非常“环保”。
我们平时用IDE开发都是把所需要的类库一股脑的全丢到项目目录下,然后全部添加到ide的构建路径中,如果用了SVN/CVS,这样会很容易就 把
- 中国天气网省市级联页面
x125858805
级联
1、页面及级联js
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
&l