- 《机器学习数学基础》补充资料:第343页结论证明
CS创新实验室
数学基础机器学习人工智能概率论
证明E(XT)=E(X)TE(\pmb{X}^{\text{T}})=E(\pmb{X})^{\text{T}}E(XT)=E(X)T《机器学习数学基础》第343页,有这样一句话:对于多维随机变量X\pmb{X}X,根据数学期望的定义,有:E(XT)=E(X)TE(\pmb{X}^{\text{T}})=E(\pmb{X})^{\text{T}}E(XT)=E(X)T。有读者反应,希望能给出有关证
- 最大值的期望 与 期望的最大值
cc一枝花
概率论
期望的最大值与最大值的期望先上结论:maxiE[Xi]≠E[maxiXi]max_i\mathbb{E}[X_i]\neq\mathbb{E}[max_iX_i]maxiE[Xi]=E[maxiXi]情况一:最大值和数学期望都关于自变量iii在这种情况下,最大值与期望都依赖于同一个随机变量。设有一个随机变量XiX_iXi,其中iii是一个离散的索引集合,例如i=1,2,…,ni=1,2,\dot
- 基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算实践过程
xiao5kou4chang6kai4
统计生态农业r语言回归贝叶斯统计学线性回归
专题一贝叶斯统计学的思想与概念1.1信念函数与概率1.2事件划分与贝叶斯法则1.3稀少事件的概率估计1.4可交换性1.5预测模型的构建专题二单参数模型2.1二项式模型与置信域2.2泊松模型与后验分布2.3指数族模型与共轭先验专题三蒙特卡罗逼近3.1蒙特卡罗方法3.2任意函数的后验推断3.3预测分布采样3.4后验模型检验专题四正态模型4.1均值与条件方差的推断4.2基于数学期望的先验4.3非正态分布
- The 2023 ICPC Asia Regionals Online Contest (2)-2023 ICPC网络赛第二场部分题解 I,M
小新-杂货铺
算法竞赛补题复盘网络算法c++
目录MDirtyWork(数学期望/贪心)IImpatientPatient(数学期望)原题地址:PTA|程序设计类实验辅助教学平台(pintia.cn)MDirtyWork(数学期望/贪心)ItisanotherICPCcontest.Yourteammatessketchedoutallsolutionstotheproblemsinafractionofasecondandwentawayt
- 中心极限定理
不倒的不倒翁先森
概率论
中心极限定理(CentralLimitTheorem,CLT)是概率论中的一个重要定理,它说明了在某些条件下,独立随机变量的和(或平均值)趋向于正态分布的性质。具体来说,中心极限定理可以描述为:定理表述:设(X1,X2,…,Xn)(X_1,X_2,\dots,X_n)(X1,X2,…,Xn)是一组相互独立、服从相同分布的随机变量,其数学期望为μ\muμ,方差为σ2\sigma^2σ2(有限且不为零
- Echarts绘制任意数据的正态分布图
tsunami_______
Vueecharts前端javascript
一、什么是正态分布正态分布,又称高斯分布或钟形曲线,是统计学中最为重要和常用的分布之一。正态分布是一种连续型的概率分布,其概率密度函数(ProbabilityDensityFunction,简称PDF)可以通过一个平均值(μ,mu)和标准差(σ,sigma)来完全描述。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准
- 概率论自复习思路
Miracle Fan
概率论
概率论复习思路(存在纰漏)文章目录概率论复习思路(存在纰漏)基本概念随机变量分布多维随机变量分布离散型连续性数字特征数学期望方差协方差系数矩、协方差矩阵大数定律抽样分布、估计、假设检验参数估计区间估计假设检验基本概念样本空间,和事件、差事件两个事件的关系:相不相容、是不是对立、两者之间的关系(ρ\rhoρ相关系数只反映线性方面,还可能存在非线性关系)事件发生的概率和发生关系:比如概率为0不一定代表
- 数学期望:靠买彩票发家为什么不现实
石小沫_
第3章频率法3.3数学期望:靠买彩票发家为什么不现实➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖️3.3数学期望:靠买彩票发家为什么不现实。️数学期望是对长期价值的数字化衡量。️数学期望简称期望,本质上是对事件长期价值的数字化衡量。✨对随机事件不同结果的概率加权求平均。(就是先把每个给果各自发生的概率和带来的影响相乘,然后把得到的数字相加,最终得到的结果就是数学期望。)️“更有效率”是一个长期价值。️️️✨要判
- 随机过程学习笔记——概论
ReEchooo
随机过程
随机过程学习笔记——概论1.随机过程1.1基本概念1.2描述随机过程的方法2.随机过程的分类和举例3.随机过程的数字特征3.1均值(数学期望)3.2方差(二阶中心矩)3.3自相关函数(简称:相关函数)3.4自协方差函数(简称:协方差函数)4.两个或两个以上随机过程的联合分布和数字特征参考教材:陆大jin《随机过程及其应用》1.随机过程1.1基本概念随机过程是这样一个过程,它不能用一个时间t的确定性
- 100天搞定机器学习|Day55 最大熵模型
统计学家
1、熵的定义熵最早是一个物理学概念,由克劳修斯于1854年提出,它是描述事物无序性的参数,跟热力学第二定律的宏观方向性有关:在不加外力的情况下,总是往混乱状态改变。熵增是宇宙的基本定律,自然的有序状态会自发的逐步变为混沌状态。1948年,香农将熵的概念引申到信道通信的过程中,从而开创了”信息论“这门学科。香农用“信息熵”来描述随机变量的不确定程度,也即信息量的数学期望。关于信息熵、条件熵、联合熵、
- 机器学习之T与F分布
WEL测试
WEL测试人工智能机器学习人工智能
T分布T分布:数学期望为mu=0,方差:σ2=nn−2(n>2)\sigma^2=\frac{n}{n-2}\quad(n>2)σ2=n−2n(n>2)。相同自由度情况下,|t|越大,概率P越小;设X~N(0,1),Y~χ2(n),并且X和Y独立,则称随机变量t=XYnt=\frac{X}{\sqrt{\frac{Y}{n}}}t=nYX服从自由度为n的t分布,记为t~t(n),t(n)分布的概率
- 人工智能之估计量评估标准及区间估计
WEL测试
人工智能WEL测试人工智能概率论机器学习
评估估计量的标准无偏性:若估计量(X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,⋯,Xn)的数学期望等于未知参数θ,即E(θ^)=θE(\hat\theta)=\thetaE(θ^)=θ则称θ^\hat\thetaθ^为θ的无偏估计量。估计量θ^\hat\thetaθ^的值不一定就是θ的真值,因为它是一个随机变量,若θ^\hat\thetaθ^是θ的无偏估计,则尽管的值随样
- Bernstein inequality伯恩施坦不等式
天空仍灿烂..
概率论人工智能
Bernsteininequality伯恩施坦不等式原公式变体公式我的疑惑问问人工智能公式知识点来源原公式概率论中,Bernsteininequalities给出了随机变量的和对平均值偏离的概率。在最简单的情况下,设X1,X2,…Xn是独立的伯努利随机变量,取值+1和-1的概率各是1/2,则对任意正数epsilon,有变体公式这个不等式的变体形式如下,设X1,X2,…Xn是数学期望为0的独立的随机
- 刘嘉概率论22讲《十.方差,围绕数学期望波动程度的度量》
阿木魔法学院
数学期望不能完整描述一个随机事件比如,你有一笔闲钱,有两个投资方案一,收益非常稳定,100%净赚5万二,不稳定,50%机会赚20万,50%机会亏10万。如果从数学期望公式来算,他们俩都是盈利5万。但是这两个方案并不一样,差别很大,具体在哪呢?一,两个方案收益稳定性不同,第一个非常稳定,第二个波动性很大。所以,数学期望不同,并不代表两件事价值一样,随机结果的波动程度,同样对一件事情的价值,对我们的决
- 机器学习之正态分布
WEL测试
人工智能WEL测试机器学习人工智能
正态分布:也称常态分布,又名高斯分布。正态曲线呈钟形,两头低,中间高,左右对称因其曲线呈钟形,也称钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ2\sigma^2σ2的正态分布,记为N(μ,σ2σ^2σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布时标准正态分布。概率密度函数为:f(x)=1σ2πe−
- 学习笔记
曲线之前剑刃之上形势节君
新公式改进=突变+选择《值得你记住的日课公式》要更新了(不全,欢迎补充):S(成功)=Q(执行力)r(想法的好坏)成功=天赋+运气大成功=多一点点天赋+很多好运气拥有更多资源=获得更好的结果成长=压力+休息知识=体验×敏感度好目标=难度X具体数学期望=成功的收益×成功的概率-失败的损失×失败的概率亲密良好的关系=开放+响应响应=理解+接受+关心梦想+现实+决心=成功人生痛苦+反思=进步塑造者=远见
- 机器学习---无偏估计
三月七꧁ ꧂
机器学习机器学习人工智能概率论
1.如何理解无偏估计无偏估计:就是我认为所有样本出现的概率⼀样。假如有N种样本我们认为所有样本出现概率都是1/N。然后根据这个来计算数学期望。此时的数学期望就是我们平常讲的平均值。数学期望本质就是平均值。2.无偏估计为何叫做“无偏”?它要“估计”什么?首先回答第⼀个问题:它要“估计”什么?它要估计的是整体的数学期望(平均值)。第⼆个问题:那为何叫做无偏?有偏是什么?假设这个是⼀些样本的集合X=x1
- 武忠祥2025高等数学,基础阶段的百度网盘+视频及PDF
m0_54050778
pdf概率论
考研数学武忠祥基础主要学习以下几个方面的内容:1.微积分:主要包括极限、连续、导数、积分等概念,以及它们的基本性质和运算方法。2.线性代数:主要包括向量、向量空间、线性方程组、矩阵、行列式、特征值和特征向量等概念,以及它们的基本性质和运算方法。3概率论与数理统计:主要包括随机事件和概率、条件概率、独立性、随机变量及其分布、数学期望方差和协方差、大数定律和中心极限定理等概念以及它们的基本性质和运算方
- E - Sugoroku 3(数学期望)
临江浪怀柔ℳ
算法
思路:数学推导过程代码:constlonglongmod=998244353;intn;inlineintqmi(intx,inty){intz=1;for(;y;y>>=1,x=x*x%mod)if(y&1)z=z*x%mod;returnz;}voidsolve(){cin>>n;vectora(n+2),sum(n+2),dp(n+2);for(inti=1;i>a[i];for(inti=
- 【课程复习-01】国科大-随机过程知识点精简版
lzl2040
我的笔记随机过程国科大期末
国科大-随机过程知识点精简版目录国科大-随机过程知识点精简版前言随机过程及其分类常见分布的概率密度和分布0-1分布二项分布泊松分布几何分布均匀分布指数分布正态分布随机过程的两种描述方式例题随机过程X(t)的数字性质单个随机过程两个随机过程随机过程的分类方式参数集和状态空间的特性统计特征或概率特征随机过程独立条件数学期望马尔可夫过程马尔可夫链定义C-K方程m步转移概率C-K方程马尔可夫链状态的分类到
- 第三周:常用的数据分布
结尾_402b
1、正态分布正态分布(Normaldistribution),也称“常态分布”,又名高斯分布(Gaussiandistribution)正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正
- R语言机器学习与临床预测模型30--主成分分析(PCA)
科研私家菜
本内容为【科研私家菜】R语言机器学习与临床预测模型系列课程R小盐准备介绍R语言机器学习与预测模型的学习笔记你想要的R语言学习资料都在这里,快来收藏关注【科研私家菜】01基础知识介绍方差:用来衡量随机变量与其数学期望(均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。协方差:度量两个随机变量关系的统计量,协方差为0的两个随机变量是不相关的。协方差矩阵:在统
- 蒙特卡洛法求积分
Phoenix Studio
统计学机器学习数据分析twittersvg
问题一:我们如何用蒙特卡洛方法求积分?问题二:如何近似求一个随机变量的数学期望?问题三:估计的误差是多少?问题四:如何从理论上对蒙特卡洛估计做分析?结论import numpy as npimport matplotlib.pyplot as pltimport seaborn as snssns.set_style('whitegrid')问题一:我们如何用蒙特卡洛方法求积分?你眼中的蒙特卡洛方
- 概率论与数理统计(期末复习)
蓝桉802
概率论
第四章数学期望与方差1.期望的性质:E(C)=C;E(X+C)=E(X)+C;E(CX)=CE(X);E(kX+C)=kE(X)+C;E(X+Y)=E(X)+E(Y);E(X-Y)=E(X-Y);;X与Y独立:E(XY)=E(X)E(Y);2.方差的性质:D(X)=E(X^2)-[E(X)]^2D(C)=0;D(X+C)=D(X);D(CX)=C^2D(X);D(kX+C)=k^2D(X);X与Y
- 概率论与数理统计 知识点+课后习题
兑生
大学课程概率论
文章目录[学习资源整合](https://www.cnblogs.com/duisheng/p/17872980.html)总复习知识点⭐常用分布的数学期望和方差选择题填空题大题1.概率2.概率3.概率4.P5.概率6.概率密度函数F(X)F(X)F(X)7.分布列求方差V(X)V(X)V(X)8.求分布函数F(X)F(X)F(X)9.求F(X)F(X)F(X)和P(X)P(X)P(X)10.求未
- 基于MATLAB的均值,方差,变量的矩(附完整代码与例题)
唠嗑!
MATLABmatlab网络安全
目录一.数学期望与方差二.样本的均值与方差三.MATLAB代码四.例题与代码4.1正态分布4.2Rayleigh分布五.随机变量的矩5.1原点矩与中心距5.2例题35.3样本向量的原点矩与中心矩一.数学期望与方差将某连续随机变量x的概率密度函数记为p(x),其数学期望E[x]可计算为:更进一步,方差D[x]可计算为:二.样本的均值与方差在实际中测出的一组样本数据写做:该样本的均值计算为:样本的方差
- 刘嘉概率论22讲《九, 对随机事件长期价值的衡量》
阿木魔法学院
数学期望期望是对长期价值的数字化衡量数学期望简称期望,计算方法很简单,就是对随机事件不同结果的概率加权求平均。用大白话说就是,先把每个结果各自发生的概率和带来的影响相乘,然后吧算出来的数相加。最后的结果就是数学期望了。比如一只股票现在50元,有40%的概率涨到60,有30%的概率保持不变,有30%的概率跌倒35那么他到底值不值得买。(60-50)*40%+(50-50)*30%+(35-50)*3
- 概率论与数理统计 第四章 随机变量的数字特征
Jarkata
课前导读求随机变量的数字特征,需要用到高等数学中积分和级数收敛的定义。第一节数学期望离散型随机变量数学期望(均值)的定义:注意,该级数需要绝对收敛连续型随机变量的数学期望:数学期望的物理含义:质心。常用离散随机变量的数学期望:两点分布;二项分布;泊松分布以上三种分布的期望的直观解释:常用连续型随机变量的数学期望:均匀分布:;指数分布;正态分布直观解释:三、数学期望的性质数学期望的性质定理:严格意义
- 期货开户投机以获取利润为目的
shuimengan8
有人从风险的角度去区分,说投资的风险小一些,投机的风险大一些。但如果这么说的话,所有天使投资人都该被叫作“天使投机人”,因为普遍来讲,80%以上的项目都归零了嘛。所以投资和投机,本质上都是一回事儿,就是在自认为数学期望大于0的前提下,以放弃使用当下价值为成本,去获取远期利益的一种行为。有人从目的的角度去区分,说投资是以获取资本产生的利润为目的,投机是以获取资本的价值增幅为目的。这看起来很正当,也符
- 简单理解数学期望
Xfree416
来看两个例子1.一篮球选手的三分球命中率是30%两分球命中率为40%如果他有无限开火权,应该多投两分球还是三分球呢?2.投筛子游戏,投中6点赢10元,投中1点输10元,其余点数不算,游戏公平吗?单凭直觉来看,第二个游戏应该是公平的,但第一个就很难判断应该投2分还是3分了。数学工具可以帮助我们在一定范围内消除不确定性,让我们的决策更加有理有据,而不是只凭感觉。第一题的数据3分0.32分0.4可以将数
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc