CF 830C(Bamboo Partition-满足\sum_{i=1}^n{ d\lceil ai/d\rceil-a_i } \leq k的d的最大值)

题意:求最大的正整数d,,使 ni=1dai/daik
观察发现只要 ai/d(i=1n) 不变, 函数是线性的,
因此对每段分别求解。
分段点共 nmax(ai)

#include
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i
#define ForD(i,n) for(int i=n;i;i--)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=Pre[x];p;p=Next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=Next[p])  
#define Lson (o<<1)
#define Rson ((o<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (1000000007)
#define pb push_back
#define mp make_pair 
#define fi first
#define se second
#define vi vector 
#define pi pair
#define SI(a) ((a).size())
#define Pr(kcase,ans) printf("Case #%d: %I64d\n",kcase,ans);
#define PRi(a,n) For(i,n-1) cout<
#define PRi2D(a,n,m) For(i,n) { \
                        For(j,m-1) cout<' ';\
                        cout<#pragma comment(linker, "/STACK:102400000,102400000")
#define ALL(x) (x).begin(),(x).end()
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return ((a-b)%F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int read()
{
    int x=0,f=1; char ch=getchar();
    while(!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();}
    while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
    return x*f;
} 
#define MAXN (110)
ll n,a[MAXN],k;
ll calc(ll d) {
    ll p=0;
    For(i,n) {
        p+=(a[i]%d+d)%d;
    }
    return p;
}
bool check(ll d) {
    if (d<0) return 0;
    ll p=0;
    For(i,n) {
        p+=(a[i]%d+d)%d;
    }
//  cout<
    return p<=k;
}
ll work(ll l,ll r) {
    ll ans=-1;
    if (l>r) return ans;
    if (l==r) {
        if (check(l)) ans=l;
        return ans;
    }
    ll p=calc(l),delta=calc(l+1)-p;
    ll mm;
    if(!delta) {
        mm=r;
    }
    else {
        ll c=(k-p)/(delta);
        mm=min(l+c,r);

    }
    if (check(mm)) ans=mm;

    return ans;
}
vector S;
int main()
{
//  freopen("C.in","r",stdin);
//  freopen(".out","w",stdout);
    cin>>n>>k;
    For(i,n) a[i]=read();
    sort(a+1,a+1+n);
    For(i,n) a[i]=-a[i];
    ll ans=0,nxt;

    For(i,n) {
        ll nxt=1;
        for(ll pre=1;pre<=-a[i];pre=nxt+1) {
            nxt=a[i]/(a[i]/pre);
            S.pb(nxt);
        }
    }
    S.pb(1);
    sort(ALL(S));
    S.erase(unique(ALL(S)),S.end());
    vector::reverse_iterator it;
    work(35,36);
    ll pre=*S.rbegin();
    for(it=S.rbegin();it!=S.rend();it++)  {
        if (check(pre)) {
            ans=pre; break;
        }
        ll nxt=*it;
        ll p=work(nxt+1,pre);
        if (p!=-1) {
            ans=max(ans,p); break;
        }
        pre=nxt;
    }
    if (check(1)) ans=max(ans,1LL);

    ll tot=-a[n]*n;
    For(i,n) tot-=-a[i];
    if(tot<=k) {
        ll p=(k-tot)/n;
        if(check(-a[n]+p)) ans=max(ans,-a[n]+p);
    }

    cout<return 0;
}

你可能感兴趣的:(数论)