P3327 [SDOI2015]约数个数和 (mobius反演)

P3327 [SDOI2015]约数个数和

推导过程

∑ i = 1 n ∑ j = 1 m d ( i j ) \sum_{i = 1} ^{n} \sum_{j = 1} ^{m} d(ij) i=1nj=1md(ij)

= ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j g c d ( x , y ) = = 1 = \sum_{i = 1} ^{n} \sum_{j = 1} ^{m} \sum_{x \mid i} \sum_{y \mid j} gcd(x, y) == 1 =i=1nj=1mxiyjgcd(x,y)==1

改成枚举 x , y x, y x,y

= ∑ i = 1 n ∑ j = 1 m ∑ i ∣ x ∑ j ∣ y g c d ( i , j ) = = 1 = \sum_{i = 1} ^{n} \sum_{j = 1} ^{m} \sum _{i \mid x} \sum_{j \mid y} gcd(i, j) == 1 =i=1nj=1mixjygcd(i,j)==1

= ∑ i = 1 n ∑ j = 1 m ⌊ n i ⌋ ⌊ m j ⌋ ( g c d ( i , j ) = = 1 ) = \sum_{i = 1} ^{n} \sum_{j = 1} ^{m} \lfloor\frac{n}{i}\rfloor \lfloor\frac{m}{j}\rfloor (gcd(i, j) == 1) =i=1nj=1minjm(gcd(i,j)==1)

= ∑ i = 1 n ∑ j = 1 m ⌊ n i ⌋ ⌊ m j ⌋ ∑ d ∣ ( g c d ( i , j ) ) μ ( d ) = \sum_{i = 1} ^{n} \sum_{j = 1} ^{m} \lfloor\frac{n}{i}\rfloor \lfloor\frac{m}{j}\rfloor \sum_{d \mid (gcd(i, j))} \mu(d) =i=1nj=1minjmd(gcd(i,j))μ(d)

∑ d = 1 n μ ( d ) ∑ i = 1 n d ⌊ n d i ⌋ ∑ j = 1 m d ⌊ m d j ⌋ \sum_{d = 1} ^{n} \mu(d)\sum_{i = 1} ^{\frac{n}{d}} \lfloor\frac{n}{di}\rfloor \sum_{j = 1} ^{\frac{m}{d}} \lfloor \frac{m}{dj}\rfloor d=1nμ(d)i=1dndinj=1dmdjm

最后我们只要预处理一下所有 n d m d \frac{n}{d} \frac{m}{d} dndm的整除分块即可,整体复杂度 n n n \sqrt n nn

代码

/*
  Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include 

#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;

const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;

inline ll read() {
    ll f = 1, x = 0;
    char c = getchar();
    while(c < '0' || c > '9') {
        if(c == '-')    f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') {
        x = (x << 1) + (x << 3) + (c ^ 48);
        c = getchar();
    }
    return f * x;
}

const int N = 5e4 + 10;

bool st[N];

vector<int> prime;

int n, m, mu[N];

ll sum[N];

void mobius() {
    st[0] = st[1] = mu[1] = 1;
    for(int i = 2; i < N; i++) {
        if(!st[i]) {
            prime.pb(i);
            mu[i] = -1;
        }
        for(int j = 0; j < prime.size() && i * prime[j] < N; j++) {
            st[i * prime[j]] = 1;
            if(i % prime[j] == 0) break;
            mu[i * prime[j]] = -mu[i];
        }
    }
    for(int i = 1; i < N; i++) {
        mu[i] += mu[i - 1];
        for(ll l = 1, r; l <= i; l = r + 1) {
            r = i / (i / l);
            sum[i] += (i / l) * (r - l + 1);
        }
    }
}

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    mobius();
    int T = read();
    while(T--) {
        ll n = read(), m = read(), ans = 0;
        if(n > m) swap(n, m);
        for(ll l = 1, r; l <= n; l = r + 1) {
            r = min(n / (n / l), m / (m / l));
            ans += 1ll * (mu[r] - mu[l - 1]) * sum[n / l] * sum[m / l];
        }
        printf("%lld\n", ans);
    }
	return 0;
}

你可能感兴趣的:(数论)