- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- 排列数+时间戳+逆元取模
wniuniu_
算法算法
前言:这个题目是真的难,不会做,看了题解才发现是咋回事题目地址最主要的就是为啥是除以3,c之前需要完成a和b,d和e对我们的答案没有影响,所以我们要除以A(3,3),但是a和b的排列没有要求,所以乘以A(2,2)抵消得到3#includeusingi64=longlong;usingu64=unsignedlonglong;consti64mod=1e9+7;i64ksm(i64a,i64b){i
- 牛客小白月赛61-E-排队
LonelyGhosts
算法
很好的一道题啊,学到了不少东西!!!!首先是一个结论逆序对总数=n!/2*不相等的数字对数(1)不相等的数字对数怎么求结论不相等的数字对数=C(n,2)-∑C(2,cnt(i))(i数字的出现次数)(2)n!/2怎么处理,有取模的除运算怎么处理???这块一直不会,今天一学才发现,就是之前学过的乘法逆元,学过就忘,不愧是我(doge这里只说怎么处理,证明之类的不写了a/b%mod的情况,可以求b的乘
- Acwing-基础算法课笔记之数学知识(中国剩余定理)
不会敲代码的狗
Acwing基础算法课笔记算法笔记线性代数
Acwing-基础算法课笔记之数学知识(中国剩余定理)一、中国剩余定理1、概述1、表述一2、表述二2、辗转相除法求逆元的回顾3、模拟过程(1)例题一(2)例题二4、闫氏思想5、求最小正整数解二、扩展知识一、中国剩余定理1、概述{x≡a1(modm1)x≡a2(modm2)x≡a3(modm3)⋮x≡an(modmn)\begin{cases}x\equiva_1(modm_1)\\x\equiva
- 预处理组合数和逆元o(n)
顾客言
java算法数据结构
intfact[N],infact[N];intqpow(inta,intb){intres=1;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}returnres;}voidinit(){fact[0]=1;for(inti=1;i=1;i--)infact[i-1]=infact[i]*i%mod;}intC(intn,intm){returnfa
- 扩展欧几里得算法 exgcd 求逆元(适用于模数不为质数的情况)
Waldeinsamkeit41
算法
原理不打算自己懂。。。代码ullexgcd(ulla,ullb,ull&x,ull&y)//扩展欧几里得求模b意义下a的逆元//返回的d是a和b的最大公约数,而最终的x是a在模b意义下的逆元{if(b==0){x=1;y=0;returna;}ulld=exgcd(b,a%b,y,x);y=y-a/b*x;returnd;}exgcd(a,b,x,y);//注意最终x可能返回负数,要加上b变成正数
- [算法学习] 逆元与欧拉降幂
Waldeinsamkeit41
学习
费马小定理两个条件:p为质数a与p互质逆元如果要求x^-1modp,用快速幂求qmi(x,p-2)就好欧拉函数思路:找到因数i,phi/i*(i-1),除干净,判断最后的n欧拉降幂欧拉定理应用示例m!是一个非常大的数,所以要用欧拉降幂,不是把m!算出来后取模,而是计算的时候取模。
- 2021-07-30
RX-0493
学了一会数论,好难1.乘法逆元:a/b%p,若a/b在进行取模运算时,会出现精度问题,而且模运算对除法不适用,(没有分配律,大概就这意思)而求出乘法逆元后,可以把原式变为a*x%p的形式,且值不变。a*x≡1(modp)中,a,p为已知量,则x为a的乘法逆元。例题:乘法逆元设p=k*i+r,(1usingnamespacestd;constintN=20000530;intn,p,inv[N];i
- P6046 纯粹容器
DBWG
洛谷算法
纯粹容器-洛谷首先先看几个通用的知识点:1.费马小定理+快速幂求逆元(求倒数)当mod为质数的时候可以使用费马小定理llksm(intx,inty){if(x==1)return1;llres=1,base=x;while(y){if(y&1)res=(res*base)%mod;base=(base*base)%mod;y>>=1;}returnres;}intinv(intaim)//inve
- 倒计时59天
算法怎么那么难啊
算法c++
(来源:b站左程云up099)一:求逆元:1)要保证a可以整除b2)要保证mod的是一个质数3)b和mod互质题目2)3)一般都满足,主要是1)方法:如求1.(10/5)%modmod=35的逆元其实就等于(5的mod-2次方)%mod=5%3=2;然后用10%mod=1,结果就等于(分母的逆元乘以分子mod后的值)%mod,即(2*1)%3=2!2.(18/6)%modmod=5先求6的逆元,就
- 逆元 与 扩展欧几里得(超级详细,c++)
海风许愿
Acm算法c++c++开发语言算法
逆元与扩展欧几里得算法(veryimportant)^-^点个赞再走吧~~^-^点个赞再走吧~~^-^点个赞再走吧~~欧几里得定理:给定任意a,b,一定存在x,y使得ax+by=gcd(a,b)公式:ax+by=gcd(a,b);1)利用欧几里得的过程给定n,对正整数ai,bi,对于每对数,求出一组xi,yi,使其满足ai*xi+bi*yi=gcd(ai,bi)推导:ax+by=d=>bx+(a%
- 组合数 与卡特兰数
海风许愿
Acm算法c++算法数据结构c++
组合数与卡特兰数1a,b比较小时采用预处理方法,提前将所有的组合数都算出来,到时候直接查表采用的公式是C(a,b)=C(a-1,b)+C(a-1,b-1)原题链接:885.求组合数I-AcWing题库核心代码:for(inti=0;i=1e5时,显然已经不能直接开二维数组打表了,这样会爆数组但是我们可以开两个一维数组,一个存取i的阶乘,一个存取i阶乘的逆元我们可以直接从定义出发C(a,b)=a!/
- [51Nod]1013 3的幂的和
闭门造折
很有代表性的一道题,用到了快速幂和逆元题干求:3^0+3^1+...+3^(N)mod1000000007快速幂参考资料《基础算法—快速幂详解》快速幂的原理是,计算m^k次方的时候,通过k的二进制值将k拆分成2^i+2^j+...,通过不断地平方运算快速计算m的k次方逆元这个真是个奇妙的东西以1013题为例,整个证明过程如下:原式=[1-3^(n+1)]/(1-3)=[3^(n+1)-1]/2[1
- 【算法竞赛模板】质因子、质数、约数、余数、快速幂(数论大全)
Ac君
算法学习c++数论质数约数蓝桥杯
常用数论的算法模板一、质因子二、质数三、约数①试除法求一个数所有约数②求约数个数③求约数和④求最大公约数gcd辗转相除扩展欧几里得反素数同余定理费马小定理(快速幂求逆元)四、余数五、组合数①DP求组合数②逆元求组合数③卢卡斯定理求组合数④高精度大数求组合数六、快速幂 苟蒻发文,若有任何不足、错误的地方欢迎大佬们来斧正~本苟蒻不胜感激(>人<;)一、质因子 定义:指能整除给定正整数的质数 性质
- 线段树简单使用 P4588 数学计算 总结
why_not_fly
算法
传送门https://www.luogu.com.cn/problem/P4588心路历程一开始确实没想到能切换成线段树,毕竟它一无区间二无线段,我第一眼看到题以为是一个大大大模拟,但是这里不能用逆元(并不互质)于是,运用一点思维,我们发现可以把一个区间全设成1(大小就是查询次数),每一次修改就修改那个点,第二种除法就将那个点化成1,这样维护一个区间,区间根节点的值就是答案当然我一开并没马上反应过
- 离散数学_代数系统
先生先生393
考研
代数系统目录代数系统1.1二元运算及其性质1.2二元运算中的特殊元素幂等元幺元(单位元恒等元)零元逆元可消去元1.3代数系统的概念1.4代数系统的性质编辑编辑编辑2.1半群2.2群与子群2.3子群及其证明子群的陪集2.4循环群:生成元编辑编辑循环群的子群1.1二元运算及其性质性质在这里减法不封闭,因为减法可能得出负数通过看是否以主对角线元素对称1.2二元运算中的特殊元素幂等元幺元(单位元恒等元)零
- 卢卡斯定理/Lucas定理板子 组合数板子
DBWG
板子算法数据结构
a是阶乘数组,提前处理好,处理到模数应该够的。ksm快速幂C是组合数函数,ksm是用来费马小定理求逆元(即倒数)。就是组合数公式,n的阶乘除以(m的阶乘和n-m的阶乘)。Lucas卢卡斯定理-OIWiki(oi-wiki.org)lla[100005];llksm(intx,inty,intmod){//因为数据范围很大容易爆掉,所以就要Fast_Powif(x==1)return1;llres=
- 拓展欧几里得法求逆元
DBWG
板子算法数据结构数学数论
板子:x即为最终答案,x可能为负数,加模数即可乘法逆元-OIWiki(oi-wiki.org)voidexgcd(inta,intb,int&x,int&y){if(b==0){x=1,y=0;return;}exgcd(b,a%b,y,x);y-=a/b*x;}使用:exgcd(a,n+1,x,y);//x就是逆元while(x<=0)x+=n+1;原理:最大公约数-OIWiki(oi-wiki
- AcWing.876.快速幂求逆元
Die love 6-feet-under
算法c++
给定nnn组ai,pi,其中pi是质数,求ai模pi的乘法逆元,若逆元不存在则输出impossibleimpossibleimpossible。注意:请返回在0∼p−10∼p−10∼p−1之间的逆元。乘法逆元的定义若整数b,mb,mb,m互质,并且对于任意的整数aaa,如果满足b∣ab|ab∣a,则存在一个整数xxx,使得ab≡a∗x(modm)\frac{a}{b}≡a*x(modm)ba≡a∗
- RSA知识点及刷题记录
甜酒大马猴
密码学python笔记
Crypto密码学------RSARSA基础知识欧拉函数phi=(p-1)*(q-1)*(r-1)gmpy2.gcd(a,b)//欧几里得算法gmpy2.gcdext(a,b)//扩展欧几里得算法gmpy2.iroot(x,n)//x开n次根d=gmpy2.invert(e,pai)//求逆元,d*e=1(modpai)gmpy2.mpz(x)//初始化一个大整数xgmpy2.mpfr(x)//
- C++ 数论相关题目:卡特兰数应用、快速幂求组合数。满足条件的01序列
伏城无嗔
数论力扣算法笔记c++算法
给定n个0和n个1,它们将按照某种顺序排成长度为2n的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中0的个数都不少于1的个数的序列有多少个。输出的答案对109+7取模。输入格式共一行,包含整数n。输出格式共一行,包含一个整数,表示答案。数据范围1≤n≤105输入样例:3输出样例:5上述描述了本题的公式推导,最终也就是求一个卡特兰数。本题中,求逆元取模的是一个质数,可以用快速幂来求,如果不
- C++ 数论相关题目 求组合数Ⅱ
伏城无嗔
算法笔记数论力扣c++算法
给定n组询问,每组询问给定两个整数a,b,请你输出Cbamod(109+7)的值。输入格式第一行包含整数n。接下来n行,每行包含一组a和b。输出格式共n行,每行输出一个询问的解。数据范围1≤n≤10000,1≤b≤a≤105输入样例:3315322输出样例:3101除的时候可能是小数,可以变成逆元,除以就等于乘以逆元。#include#includetypedeflonglongLL;usingn
- 逆元的描述及两种常见求解方式
linghyu
算法
求逆元的方法因为在算法竞赛中模数p总是质数,所以可以利用费马小定理:bp−1mod p=1b^{p−1}\modp=1bp−1modp=1可以直接得到所以bp−2b^{p-2}bp−2即为b在modp意义下的逆元llpow(lla,lln,llp)//快速幂a^n%p{llans=1;while(n){if(n&1)ans=ans*a%p;a=a*a%p;n>>=1;}returnans;}ll
- 牛客——小红又战小紫(概率dp和逆元)
垠二
算法概率dp逆元
链接:登录—专业IT笔试面试备考平台_牛客网来源:牛客网小红上次输给了小紫,表示不服,于是又约来小紫来玩一个游戏。这次是取石子游戏:共有nnn堆石子,两人轮流使用以下两种技能中的一种进行取石子:1.随机选择某一堆石子,取走其中的一颗石子。2.每一堆石子各取走一颗石子。小红先手,谁先取完所有的石子谁获胜。两人都希望自己的获胜概率尽可能高,假设两人都绝顶聪明,请你计算小红最终获胜的概率。#includ
- C++ 数论相关题目(快速幂求逆元)
伏城无嗔
数论力扣算法笔记c++算法
给定n组ai,pi,其中pi是质数,求ai模pi的乘法逆元,若逆元不存在则输出impossible。注意:请返回在0∼p−1之间的逆元。乘法逆元的定义若整数b,m互质,并且对于任意的整数a,如果满足b|a,则存在一个整数x,使得ab≡a×x(modm),则称x为b的模m乘法逆元,记为b−1(modm)。b存在乘法逆元的充要条件是b与模数m互质。当模数m为质数时,bm−2即为b的乘法逆元。输入格式第
- 算法学习系列(二十八):快速幂、逆元
lijiachang030718
算法算法学习
目录引言一、快速幂概念二、代码模板三、例题1.快速幂模板题四、快速幂求逆元引言这个快速幂还是很重要的,算是一个比较基础的问题在数论里面,主要是为了降低时间复杂度用的,然后介绍了逆元的概念以及如何用快速幂来求。一、快速幂概念求akmodpa^{k}\mod\pakmodp,一般就是累积kkk次,时间复杂度为O(N)O(N)O(N)快速幂:先预处理出a20,a21a22⋯a2logka^{2^{0}}
- 线性求逆元(模板题)
:Alarm clock
算法数据结构
直接上AC代码#includeusingnamespacestd;#definelllonglongconstinttwx=3e6+100;constintinf=0x3f3f3f3f;llread(){llsum=0;llflag=1;charc=getchar();while(c'9'){if(c=='-'){flag=-1;}c=getchar();}while(c>='0'&&cusing
- 【数学】二元一次不定方程、裴蜀定理、扩展欧几里得算法与乘法逆元
OIer-zyh
数学#数论c++算法OI数论数学
二元一次不定方程形如ax+by=cax+by=cax+by=c的方程称为二元一次不定方程。在数论中一般研究该方程的整数解。明显原方程无整数解或有无穷多组整数解。裴蜀定理裴蜀定理:当且仅当gcd(a,b)∣c\gcd(a,b)|cgcd(a,b)∣c时,二元一次不定方程有整数解。一方面,ax+by≡0≡c(modgcd(a,b))ax+by\equiv0\equivc\pmod{\gcd(a,b
- MIT18.06线性代数课程笔记20:矩阵逆元计算、克里默法则 以及 行列式与volume、外积的关系
silent56_th
mit18-06麻省理工线性代数矩阵矩阵求逆
课程简介18.06是GilbertStrang教授在MIT开的线性代数公开课,课程视频以及相关资料请见https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.htm。课程笔记利用代数余子式计算方阵的逆元,进而求解Ax=b,最后简要阐述了行列式与volume的关系,并对外积做了简要介绍。文中所用图取
- 群G及群运算
untypical_Idealism
密码学算法
定义:一个非空集合G中,如果定义了一个“乘法”运算(元素的二元运算),满足以下四个性质,那么该非空集合G称为群:封闭性:∀a,b∈G,a×b=c∈G结合律:∀a,b,c∈G,a×(b×c)=(a×b)×c单位元:∃e∈G,∀a∈G,e×a=a×e=a逆元:∃e∈G,∀a∈G,∃a−1∈G,a−1×a=a×a−1=e分类:交换群:交换律成立非交换群:交换律不成立有限群:|G|有限(|G|:群G中元素
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_