杭电2669拓展欧几里得

杭电2669
给a,b求Xa Yb = 1.如果没有则输出sorry。
可以通过拓展欧几里得指导Xa Yb = gcd(a,b).
不言而喻要判断gcd(a,b)是否等于1.如果不等于1,那么就是sorry。如果等于一,那么还不能让x小于0,要对x,y进行加减操作满足x>0;拓展欧几里得是通过递归从下往上进行运算。

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;

/*
 * 拓展欧几里得
 */
public class hdu2669 {
 static long x=0;static long y=0;
	public static void main(String[] args) throws IOException {
		// TODO 自动生成的方法存根
		StreamTokenizer in=new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
		PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
		while(in.nextToken()!=StreamTokenizer.TT_EOF)
		{
			long a=(long)in.nval;
			in.nextToken();
			long b=(long)in.nval;
			long q=tgcd(a,b);
			if(1%q!=0) {out.println("sorry");}//gcd要和要求相等(这里等于1)
			else {
				while(x<=0){//x*a y*b=1 要求x>0这样并且要求x最小,那么这样操作就相当于 ab-ab操作。刚开始还没明白
					x =b;
					y-=a;
				}
				out.println(x " " y);}//
			out.flush();
		}		
	}
	static long tgcd(long a,long b)
	{
		if(b==0) {x=1;y=0;return a;}
		long ans=tgcd(b,a%b);
		long team=x;
		x=y;
		y=team-a/b*y;
		return ans;
		
	}
}

你可能感兴趣的:(#,数论)