- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- 排列数+时间戳+逆元取模
wniuniu_
算法算法
前言:这个题目是真的难,不会做,看了题解才发现是咋回事题目地址最主要的就是为啥是除以3,c之前需要完成a和b,d和e对我们的答案没有影响,所以我们要除以A(3,3),但是a和b的排列没有要求,所以乘以A(2,2)抵消得到3#includeusingi64=longlong;usingu64=unsignedlonglong;consti64mod=1e9+7;i64ksm(i64a,i64b){i
- 牛客小白月赛61-E-排队
LonelyGhosts
算法
很好的一道题啊,学到了不少东西!!!!首先是一个结论逆序对总数=n!/2*不相等的数字对数(1)不相等的数字对数怎么求结论不相等的数字对数=C(n,2)-∑C(2,cnt(i))(i数字的出现次数)(2)n!/2怎么处理,有取模的除运算怎么处理???这块一直不会,今天一学才发现,就是之前学过的乘法逆元,学过就忘,不愧是我(doge这里只说怎么处理,证明之类的不写了a/b%mod的情况,可以求b的乘
- Acwing-基础算法课笔记之数学知识(中国剩余定理)
不会敲代码的狗
Acwing基础算法课笔记算法笔记线性代数
Acwing-基础算法课笔记之数学知识(中国剩余定理)一、中国剩余定理1、概述1、表述一2、表述二2、辗转相除法求逆元的回顾3、模拟过程(1)例题一(2)例题二4、闫氏思想5、求最小正整数解二、扩展知识一、中国剩余定理1、概述{x≡a1(modm1)x≡a2(modm2)x≡a3(modm3)⋮x≡an(modmn)\begin{cases}x\equiva_1(modm_1)\\x\equiva
- 预处理组合数和逆元o(n)
顾客言
java算法数据结构
intfact[N],infact[N];intqpow(inta,intb){intres=1;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}returnres;}voidinit(){fact[0]=1;for(inti=1;i=1;i--)infact[i-1]=infact[i]*i%mod;}intC(intn,intm){returnfa
- 扩展欧几里得算法 exgcd 求逆元(适用于模数不为质数的情况)
Waldeinsamkeit41
算法
原理不打算自己懂。。。代码ullexgcd(ulla,ullb,ull&x,ull&y)//扩展欧几里得求模b意义下a的逆元//返回的d是a和b的最大公约数,而最终的x是a在模b意义下的逆元{if(b==0){x=1;y=0;returna;}ulld=exgcd(b,a%b,y,x);y=y-a/b*x;returnd;}exgcd(a,b,x,y);//注意最终x可能返回负数,要加上b变成正数
- [算法学习] 逆元与欧拉降幂
Waldeinsamkeit41
学习
费马小定理两个条件:p为质数a与p互质逆元如果要求x^-1modp,用快速幂求qmi(x,p-2)就好欧拉函数思路:找到因数i,phi/i*(i-1),除干净,判断最后的n欧拉降幂欧拉定理应用示例m!是一个非常大的数,所以要用欧拉降幂,不是把m!算出来后取模,而是计算的时候取模。
- 2021-07-30
RX-0493
学了一会数论,好难1.乘法逆元:a/b%p,若a/b在进行取模运算时,会出现精度问题,而且模运算对除法不适用,(没有分配律,大概就这意思)而求出乘法逆元后,可以把原式变为a*x%p的形式,且值不变。a*x≡1(modp)中,a,p为已知量,则x为a的乘法逆元。例题:乘法逆元设p=k*i+r,(1usingnamespacestd;constintN=20000530;intn,p,inv[N];i
- P6046 纯粹容器
DBWG
洛谷算法
纯粹容器-洛谷首先先看几个通用的知识点:1.费马小定理+快速幂求逆元(求倒数)当mod为质数的时候可以使用费马小定理llksm(intx,inty){if(x==1)return1;llres=1,base=x;while(y){if(y&1)res=(res*base)%mod;base=(base*base)%mod;y>>=1;}returnres;}intinv(intaim)//inve
- 倒计时59天
算法怎么那么难啊
算法c++
(来源:b站左程云up099)一:求逆元:1)要保证a可以整除b2)要保证mod的是一个质数3)b和mod互质题目2)3)一般都满足,主要是1)方法:如求1.(10/5)%modmod=35的逆元其实就等于(5的mod-2次方)%mod=5%3=2;然后用10%mod=1,结果就等于(分母的逆元乘以分子mod后的值)%mod,即(2*1)%3=2!2.(18/6)%modmod=5先求6的逆元,就
- 逆元 与 扩展欧几里得(超级详细,c++)
海风许愿
Acm算法c++c++开发语言算法
逆元与扩展欧几里得算法(veryimportant)^-^点个赞再走吧~~^-^点个赞再走吧~~^-^点个赞再走吧~~欧几里得定理:给定任意a,b,一定存在x,y使得ax+by=gcd(a,b)公式:ax+by=gcd(a,b);1)利用欧几里得的过程给定n,对正整数ai,bi,对于每对数,求出一组xi,yi,使其满足ai*xi+bi*yi=gcd(ai,bi)推导:ax+by=d=>bx+(a%
- 组合数 与卡特兰数
海风许愿
Acm算法c++算法数据结构c++
组合数与卡特兰数1a,b比较小时采用预处理方法,提前将所有的组合数都算出来,到时候直接查表采用的公式是C(a,b)=C(a-1,b)+C(a-1,b-1)原题链接:885.求组合数I-AcWing题库核心代码:for(inti=0;i=1e5时,显然已经不能直接开二维数组打表了,这样会爆数组但是我们可以开两个一维数组,一个存取i的阶乘,一个存取i阶乘的逆元我们可以直接从定义出发C(a,b)=a!/
- [51Nod]1013 3的幂的和
闭门造折
很有代表性的一道题,用到了快速幂和逆元题干求:3^0+3^1+...+3^(N)mod1000000007快速幂参考资料《基础算法—快速幂详解》快速幂的原理是,计算m^k次方的时候,通过k的二进制值将k拆分成2^i+2^j+...,通过不断地平方运算快速计算m的k次方逆元这个真是个奇妙的东西以1013题为例,整个证明过程如下:原式=[1-3^(n+1)]/(1-3)=[3^(n+1)-1]/2[1
- 【算法竞赛模板】质因子、质数、约数、余数、快速幂(数论大全)
Ac君
算法学习c++数论质数约数蓝桥杯
常用数论的算法模板一、质因子二、质数三、约数①试除法求一个数所有约数②求约数个数③求约数和④求最大公约数gcd辗转相除扩展欧几里得反素数同余定理费马小定理(快速幂求逆元)四、余数五、组合数①DP求组合数②逆元求组合数③卢卡斯定理求组合数④高精度大数求组合数六、快速幂 苟蒻发文,若有任何不足、错误的地方欢迎大佬们来斧正~本苟蒻不胜感激(>人<;)一、质因子 定义:指能整除给定正整数的质数 性质
- 线段树简单使用 P4588 数学计算 总结
why_not_fly
算法
传送门https://www.luogu.com.cn/problem/P4588心路历程一开始确实没想到能切换成线段树,毕竟它一无区间二无线段,我第一眼看到题以为是一个大大大模拟,但是这里不能用逆元(并不互质)于是,运用一点思维,我们发现可以把一个区间全设成1(大小就是查询次数),每一次修改就修改那个点,第二种除法就将那个点化成1,这样维护一个区间,区间根节点的值就是答案当然我一开并没马上反应过
- 离散数学_代数系统
先生先生393
考研
代数系统目录代数系统1.1二元运算及其性质1.2二元运算中的特殊元素幂等元幺元(单位元恒等元)零元逆元可消去元1.3代数系统的概念1.4代数系统的性质编辑编辑编辑2.1半群2.2群与子群2.3子群及其证明子群的陪集2.4循环群:生成元编辑编辑循环群的子群1.1二元运算及其性质性质在这里减法不封闭,因为减法可能得出负数通过看是否以主对角线元素对称1.2二元运算中的特殊元素幂等元幺元(单位元恒等元)零
- 卢卡斯定理/Lucas定理板子 组合数板子
DBWG
板子算法数据结构
a是阶乘数组,提前处理好,处理到模数应该够的。ksm快速幂C是组合数函数,ksm是用来费马小定理求逆元(即倒数)。就是组合数公式,n的阶乘除以(m的阶乘和n-m的阶乘)。Lucas卢卡斯定理-OIWiki(oi-wiki.org)lla[100005];llksm(intx,inty,intmod){//因为数据范围很大容易爆掉,所以就要Fast_Powif(x==1)return1;llres=
- 拓展欧几里得法求逆元
DBWG
板子算法数据结构数学数论
板子:x即为最终答案,x可能为负数,加模数即可乘法逆元-OIWiki(oi-wiki.org)voidexgcd(inta,intb,int&x,int&y){if(b==0){x=1,y=0;return;}exgcd(b,a%b,y,x);y-=a/b*x;}使用:exgcd(a,n+1,x,y);//x就是逆元while(x<=0)x+=n+1;原理:最大公约数-OIWiki(oi-wiki
- AcWing.876.快速幂求逆元
Die love 6-feet-under
算法c++
给定nnn组ai,pi,其中pi是质数,求ai模pi的乘法逆元,若逆元不存在则输出impossibleimpossibleimpossible。注意:请返回在0∼p−10∼p−10∼p−1之间的逆元。乘法逆元的定义若整数b,mb,mb,m互质,并且对于任意的整数aaa,如果满足b∣ab|ab∣a,则存在一个整数xxx,使得ab≡a∗x(modm)\frac{a}{b}≡a*x(modm)ba≡a∗
- RSA知识点及刷题记录
甜酒大马猴
密码学python笔记
Crypto密码学------RSARSA基础知识欧拉函数phi=(p-1)*(q-1)*(r-1)gmpy2.gcd(a,b)//欧几里得算法gmpy2.gcdext(a,b)//扩展欧几里得算法gmpy2.iroot(x,n)//x开n次根d=gmpy2.invert(e,pai)//求逆元,d*e=1(modpai)gmpy2.mpz(x)//初始化一个大整数xgmpy2.mpfr(x)//
- C++ 数论相关题目:卡特兰数应用、快速幂求组合数。满足条件的01序列
伏城无嗔
数论力扣算法笔记c++算法
给定n个0和n个1,它们将按照某种顺序排成长度为2n的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中0的个数都不少于1的个数的序列有多少个。输出的答案对109+7取模。输入格式共一行,包含整数n。输出格式共一行,包含一个整数,表示答案。数据范围1≤n≤105输入样例:3输出样例:5上述描述了本题的公式推导,最终也就是求一个卡特兰数。本题中,求逆元取模的是一个质数,可以用快速幂来求,如果不
- C++ 数论相关题目 求组合数Ⅱ
伏城无嗔
算法笔记数论力扣c++算法
给定n组询问,每组询问给定两个整数a,b,请你输出Cbamod(109+7)的值。输入格式第一行包含整数n。接下来n行,每行包含一组a和b。输出格式共n行,每行输出一个询问的解。数据范围1≤n≤10000,1≤b≤a≤105输入样例:3315322输出样例:3101除的时候可能是小数,可以变成逆元,除以就等于乘以逆元。#include#includetypedeflonglongLL;usingn
- 逆元的描述及两种常见求解方式
linghyu
算法
求逆元的方法因为在算法竞赛中模数p总是质数,所以可以利用费马小定理:bp−1mod p=1b^{p−1}\modp=1bp−1modp=1可以直接得到所以bp−2b^{p-2}bp−2即为b在modp意义下的逆元llpow(lla,lln,llp)//快速幂a^n%p{llans=1;while(n){if(n&1)ans=ans*a%p;a=a*a%p;n>>=1;}returnans;}ll
- 牛客——小红又战小紫(概率dp和逆元)
垠二
算法概率dp逆元
链接:登录—专业IT笔试面试备考平台_牛客网来源:牛客网小红上次输给了小紫,表示不服,于是又约来小紫来玩一个游戏。这次是取石子游戏:共有nnn堆石子,两人轮流使用以下两种技能中的一种进行取石子:1.随机选择某一堆石子,取走其中的一颗石子。2.每一堆石子各取走一颗石子。小红先手,谁先取完所有的石子谁获胜。两人都希望自己的获胜概率尽可能高,假设两人都绝顶聪明,请你计算小红最终获胜的概率。#includ
- C++ 数论相关题目(快速幂求逆元)
伏城无嗔
数论力扣算法笔记c++算法
给定n组ai,pi,其中pi是质数,求ai模pi的乘法逆元,若逆元不存在则输出impossible。注意:请返回在0∼p−1之间的逆元。乘法逆元的定义若整数b,m互质,并且对于任意的整数a,如果满足b|a,则存在一个整数x,使得ab≡a×x(modm),则称x为b的模m乘法逆元,记为b−1(modm)。b存在乘法逆元的充要条件是b与模数m互质。当模数m为质数时,bm−2即为b的乘法逆元。输入格式第
- 算法学习系列(二十八):快速幂、逆元
lijiachang030718
算法算法学习
目录引言一、快速幂概念二、代码模板三、例题1.快速幂模板题四、快速幂求逆元引言这个快速幂还是很重要的,算是一个比较基础的问题在数论里面,主要是为了降低时间复杂度用的,然后介绍了逆元的概念以及如何用快速幂来求。一、快速幂概念求akmodpa^{k}\mod\pakmodp,一般就是累积kkk次,时间复杂度为O(N)O(N)O(N)快速幂:先预处理出a20,a21a22⋯a2logka^{2^{0}}
- 线性求逆元(模板题)
:Alarm clock
算法数据结构
直接上AC代码#includeusingnamespacestd;#definelllonglongconstinttwx=3e6+100;constintinf=0x3f3f3f3f;llread(){llsum=0;llflag=1;charc=getchar();while(c'9'){if(c=='-'){flag=-1;}c=getchar();}while(c>='0'&&cusing
- 【数学】二元一次不定方程、裴蜀定理、扩展欧几里得算法与乘法逆元
OIer-zyh
数学#数论c++算法OI数论数学
二元一次不定方程形如ax+by=cax+by=cax+by=c的方程称为二元一次不定方程。在数论中一般研究该方程的整数解。明显原方程无整数解或有无穷多组整数解。裴蜀定理裴蜀定理:当且仅当gcd(a,b)∣c\gcd(a,b)|cgcd(a,b)∣c时,二元一次不定方程有整数解。一方面,ax+by≡0≡c(modgcd(a,b))ax+by\equiv0\equivc\pmod{\gcd(a,b
- MIT18.06线性代数课程笔记20:矩阵逆元计算、克里默法则 以及 行列式与volume、外积的关系
silent56_th
mit18-06麻省理工线性代数矩阵矩阵求逆
课程简介18.06是GilbertStrang教授在MIT开的线性代数公开课,课程视频以及相关资料请见https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.htm。课程笔记利用代数余子式计算方阵的逆元,进而求解Ax=b,最后简要阐述了行列式与volume的关系,并对外积做了简要介绍。文中所用图取
- 群G及群运算
untypical_Idealism
密码学算法
定义:一个非空集合G中,如果定义了一个“乘法”运算(元素的二元运算),满足以下四个性质,那么该非空集合G称为群:封闭性:∀a,b∈G,a×b=c∈G结合律:∀a,b,c∈G,a×(b×c)=(a×b)×c单位元:∃e∈G,∀a∈G,e×a=a×e=a逆元:∃e∈G,∀a∈G,∃a−1∈G,a−1×a=a×a−1=e分类:交换群:交换律成立非交换群:交换律不成立有限群:|G|有限(|G|:群G中元素
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置