- 题集收集
YouthDance
正在努力的更新中dp概率期望poj2096zoj3329zoj3551zoj3582zoj3640poj3071poj3756hdu4035hdu4050CF24D2satpoj2723已做poj3207已做poj3648已做poj3683已做poj2296已做poj2749poj3905已做poj3678已做hdu3622已做hdu2444已做hdu3062已做hdu1824已做hdu4115k
- 师兄的题集
laserss
acm--
dp概率期望poj2096zoj3329zoj3551zoj3582zoj3640poj3071poj3756hdu4035hdu4050CF24D2satpoj2723已做poj3207已做poj3648已做poj3683已做poj2296已做poj2749poj3905已做poj3678已做hdu3622已做hdu2444已做hdu3062已做hdu1824已做hdu4115kmppoj196
- AtCoder Beginner Contest 224题解 A-G
无码萌妹码代码
夜深人静写算法anotheroj1024程序员节
AtCoderBeginnerContest224(A-G)知识点整理:题号知识点备注A无B无C数学DBFS八数码问题变种E动态规划329.矩阵中的最长递增路径变种F概率期望,算贡献,快速幂,逆元G数学,推公式H最小费用最大流签到题、简单题A-Tires判断一个字符串是不是以er或ist结尾。直接做即可#includeusingnamespacestd;intmain(){strings;cin>
- CF1523E - Crypto Lights——概率期望、组合数学、容斥
偶耶XJX
信息竞赛解题Codeforces组合数学
E-CryptoLights题目描述给你nnn个初始关闭的灯,每次随机操作把一个关闭的灯打开,一直操作直到出现两个亮着的灯的距离小于等于kkk。求最后期望亮着多少个灯。数据范围与提示共有ttt组数据;1≤t≤10,1≤k≤n≤1051\let\le10,1\lek\len\le10^51≤t≤10,1≤k≤n≤105。前言D题真做不来,不知道⌈n2⌉\lceil\frac{n}{2}\rceil⌈
- 学习笔记:概率期望
tsqtsqtsq0309
学习笔记
概率&期望样本空间、随机事件定义一个随机现象中可能发生的不能再细分的结果被称为样本点。所有样本点的集合称为样本空间,通常用Ω\OmegaΩ来表示。一个随机事件是样本空间Ω\OmegaΩ的子集,它由若干样本点构成,用大写字母A,B,C,⋯A,B,C,\cdotsA,B,C,⋯表示。对于一个随机现象的结果ω\omegaω和一个随机事件AAA,我们称事件AAA发生了当且仅当ω∈A\omega\inAω∈
- 概率期望dp
_fairyland
dp算法动态规划
Blocks期望dp,从已经满足的点倒着推,首先考虑状态,发现nnn很小,直接状压,然后暴力枚举状态看是否全部覆盖,发现坐标跨度很大,对坐标离散化,依次差分修改,O(n22n)O(n^22^n)O(n22n),然后就可以直接dp了dpi=∑jdpi[(1#definelllonglongconstllmod=998244353;intx1[15],x2[15],y2[15];intsum[50][
- 2020ICPC南京【个人题解EFHKLM】
juruo_c
XCPC题解算法c++图论
目录E-EvilCoordinate(思维、暴力)思路代码F-Fireworks(概率期望、三分)思路代码H-HarmoniousRectangle(思维、暴力)思路代码K-KCo-primePermutation(签到、构造)思路代码L-Let'sPlayCurling(签到)思路代码M-MonsterHunter(树形背包)思路代码E-EvilCoordinate(思维、暴力)思路首先如果炸弹
- K - Kingdom‘s Power 贪心,E-奇环_牛客练习赛106 二分图 鸽笼原理,F-座位_概率期望,G-交换_dp
killer_queen4804
算法c++总结算法图论c++
K-Kingdom'sPower贪心一开始想的是要想路程最小,那么他一定是先去征服size最小的子树是最好的,然后就wa了,正解应该是按照深度来贪心,对于一个节点u的子节点,按照u走完子节点的步数进行排序,先从步数小的走,然后走下一个节点时看看是直接走根节点再派一个军队还是让刚才走的那个军队再来征服这个,去一个最小值即可,题解代码的实现还是挺巧的CCPC2020秦皇岛K题K.Kingdom'sPo
- 贝尔曼方程推导
寧寧NH
强化学习
马尔可夫的动态特性:回报:(两种定义)或(折扣率大于等于0小于等于1,折扣率决定了未来收益的现值)状态价值函数:从状态s开始,智能体按照策略π进行决策所获得回报的概率期望值动作价值函数:动作价值函数与状态价值函数的关系:动作价值函数与马尔可夫的动态特性的关系:因此贝尔曼方程推导为:或(原理一样,只不过我当时没看明白书上的推导,所以按照自己的理解根据回溯图手写了一下,其实手写和书上截图的推导是一样一
- B - Discovering Gold(概率期望dp)
weixin_44040169
期望dp
Youareinacave,alongcave!Thecavecanberepresentedbya1xNgrid.Eachcellofthecavecancontainanyamountofgold.Initiallyyouareinposition1.Noweachturnyouthrowaperfect6sideddice.IfyougetXinthediceafterthrowing,yo
- 中奖概率的谬误
C20130911
数学
中奖概率期望的谬误问题:假设独立事件发生概率为P,那么重复多少次,独立事件期望发生,即期望值为1?回答:这个问题很简单,有点概率论基础的,都知道:E=1/p。即独立事件的概率是50%,那么期望重复两次就能发生,例如抛硬币问题。在生活中,人们总是会想当然的认为期望值达到了,事件就一定会发生。就像抛硬币两次应该就会出现至少一次正面了,潜意识中认为这个概率是很大的,但实际上这个概率有多大呢?1−50%∗
- 【BZOJ3143】游走(HNOI2013)-DP+概率期望+高斯消元
Maxwei_wzj
动态规划-普通DP数学-概率期望算法-高斯消元
测试地址:游走做法:本题需要用到DP+概率期望+高斯消元。首先根据期望可加性,我们知道路径和的期望等于每条边的期望经过次数乘上边权。又根据排序不等式,我们知道给大的期望次数分配小的编号是最优的,那么现在问题就变成求每条边的期望经过次数。我们可以先求出每个点的期望经过次数pipi,然后边(i,j)(i,j)的期望经过次数就是pideg(i)+pjdeg(j)pideg(i)+pjdeg(j),其中d
- 【BZOJ3616】War,KD树+bitset压位
iamxym
思路:一开始想到顺序无关、轮数独立啥的,想用DP来做,但发现怎么定义状态都有后效性,想套容斥发现也没有什么用,后来聪哥提供思路(baochuzhengjie),对于一些概率期望的题目,除DP外还可以考虑每一个元素的贡献沿着这种思路想一下,求解就可以考虑每个阵营的贡献,即阵营i的所有炮塔一轮中都不会受攻击的概率Pi的m次方,累和起来答案就是∑i=1kPmiPi=n−sinsi指能攻击到种类i炮塔的炮
- 数论
luogu_wbling
数论数论
一、错排考虑一个有n个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排。求错排个数:D(n)=(n-1)[D(n-2)+D(n-1)]详细:错排二、卡特兰数三、期望概率期望可加性:若满足P(a,b)=P(a)*P(b),则有E(a,b)=E(a)+E(b)四、逆元(inv)前言:给定正整数m,若用m除以两个整数a和b所得余数相同,称a和b对模m同余,记
- 概率期望知识点及题目详解
diecimu4798
基础知识期望的线性性质\(E(X+Y)=E(X)+E(Y)\)证明:\(E(X+Y)=\sum\limits_i\sum\limits_jP(X=i\&\&Y=j)(i+j)\)\(=\sum\limits_i\sum\limits_jP(X=i\&\&Y=j)i+\sum\limits_i\sum\limits_jP(X=i\&\&Y=j)j\)\(=\sum\limits_ii\sum\lim
- 【总结】概率与期望
616156
总结数论DP高斯消元数学概率与期望
前言作为NOIP级的知识点,概率与期望算是比较困难的类型了。但其实也不是无法解决的难题。本文主要通过作者本人的刷题经历,对概率期望类题目进行总结。概率51Nod1639绑鞋带:有n根鞋带混在一起,每根鞋带有两个鞋带头。现在重复n次以下操作:随机抽出两个鞋带头,把它们绑在一起。求最终只形成一个环的概率?依次考虑每一步操作,现在已经选出来了一个头,它必须和非它所在的链的另一个头绑在一起,才能得到合法方
- Dice (III) LightOJ - 1248(概率期望+几何分布(n面骰子,问看到所有的面一次的至少所需掷骰子次数的期望)
发型睡姿决定
概率期望&&概率DP
LOJ—1248题意:一个均匀的骰子有n个面投色子,要求最后要把骰子的每一面都看到了,求扔骰子次数的期望。分析:1.几何分布上面我们定义只要E(x)=1/P,P表示第k次成功的概率扔出第一面成功的概率为P=1,E=1,因为第一面肯定没见过。扔出第二面成功的概率为P=(n-1)/n,E=n/(n-1)(因为实验独立,所以有n-1个可以当作第二面)扔出第i面成功的概率为P=(n-i-1)/n,E=n/
- 概率与期望详解!一次精通oi中的概率期望
Tyl18858230607
目录基础概念最大值不超过Y的期望概率为P时期望成功次数基础问题拿球随机游走经典问题期望线性性练习题例题选讲noip2016换教室区间交0-1边树求直径期望球染色区间翻转二位&三维凸包点数期望单选错位KILL后记@(期望与概率)基础概念随机变量:有多种可能的取值的变量万物都可以当做随机变量,包括常数,方便用\(\sum\)统计P(A):事件A发⽣的概率E(X):随机变量X的期望值,\(E(X)=Su
- HMM(Hidden Markov Model)
SunChao3555
ML
目录HMM定义HMM的确定从⽣成式的观点考虑隐马尔科夫模型,我们可以更好地理解隐马尔科夫模型。HMM的参数统一定义:HMM举例HMM的3个基本问题概率计算问题定义:前向概率-后向概率前向算法后向算法前后向关系单个状态的概率:两个状态的联合概率期望学习问题监督学习方法Baum-Welch算法(非监督学习方法)预测问题近似算法Viterbi算法python实现中文分词-------七月算法机器学习笔记
- Everything Is Generated In Equal Probability(HDU - 6595,概率期望)
The___Flash
#概率
一.题目链接:HDU-6595二.题目大意:题目给定一个正整数N.在区间[1,N]中随机等概率地选取一个正整数n,然后随机等概率地生成一个长度为n的排列A,然后调用函数CALCULATE(A).SUBSEQUENCE(A):随机生成一个序列A的子序列.CNTINVERSIONPAIRS(A):返回序列A的逆序对数.CALCULATE(A):计算序列A的逆序数C,再随机选取一个A的子序列B,递归返回
- CF1151F Sonya and Informatics(概率期望,DP,矩阵快速幂)
angzuo8655
明明是水题结果没切掉……降智了……首先令$c$为序列中$0$的个数,那么排序后序列肯定是前面$c$个$0$,后面$n-c$个$1$。那么就能上DP了。(居然卡在这里……)$f[i][j]$表示经过$i$次操作后,前$c$个数中有$j$个$0$的方案数。答案就是$\dfrac{f[k][c]}{\sumf[k][i]}$。这个状态的好处就是可以直接求出以下这些值:前$c$个数中$1$的个数为$c-j
- 概率期望中高斯消元的几种用法
IDnumber4
数论题解总结
前置知识:高斯消元法博主理解浅显,只能膜piao别人的总结戳别人家的题解咳咳……还是简单介绍两句它可以用O(n3)O(n^3)O(n3)的复杂度解出n元方程组表示方法:矩阵tips:一般情况下高斯消元可能出现无解、无穷解的情况,我的做法里面没有判断,由于矩阵对角线上不会出现0。概率与期望:概率:发生的可能性期望:概率的加权平均数(表示对权值的一个预期值)eg.某图中从起点经过i步到达终点的可能性为
- 2020寒假培训期望dp(概率dp)题解
MOGU漠沽
如何提高博客访问量?概率期望dp一般都是逆推。正推的话要计算期望的期望,非常麻烦!一般来说,总有一个末状态是一定会发生,从这个状态开始逆推可以简化许多问题。期望dp和普通的dp的不同处。普通的dp可能纪录的是dp[i]到了i这个状态时的最优解,而期望dp一般纪录dp[i]以i这个状态为起点能得到的最优解。E.DiscoveringGold题意:大富翁地图。丢筛子,每个格子有val,如果最后丢出筛子
- codeforces 概率期望
wa自动机
数学dp
概率dp:1:一般dp[i][j][k]表示这种状态的概率,然后利用填表法或者刷表法转移;2:一般初始状态(末尾状态)只能有一个,末尾状态(初始状态)如果有多个要考虑将所有的概率加(取max)起来;codeforces442B概率+贪心题意:有n个人,每个人可以提出一个问题,提出问题的成功率为a[i],现在要求这n个人总共成功提出一个问题的成功率;思路:假设p1p2p3p20.5时,不选任何人最好
- 动态规划求概率期望和高斯消元求解方程组
livingsu
算法课的project有一道很有意思的题目,是用动态规划求概率期望,其中用到了高斯消元法,特此记录一下。题目:小Z来到一个古墓去寻找宝藏。古墓中有非常多的路口和岔路,有些路口有陷阱,小Z在每次经过路口i的陷阱的时候都要掉A[i]点血,而且陷阱是永久有效的(即小Z每到一次路口i就要掉A[i]点血)。幸运的是,有一些路口没有陷阱。可不幸的是,小Z是个路痴,他完全无法判断他走过哪里,要去哪里;他只能在每
- codeforces 335 E Counting Skyscrapers(概率期望)
Coco_T_
省选概率期望
题目链接题目翻译分析:啊咧,为什么标签都是dp唉?但是前辈都吐槽这道题根本不是dp啊。。。前辈说有一个O(n2h)O(n2h)的dp(只针对已知Alice求Bob),xue微想了一下:f[i][k]f[i][k]表示到第i栋楼,ta的高度为k时Bob计数器的期望枚举与i连接的建筑物j,显然j~i之间不会有楼高于k,概率为:(k−1)xhx,x=i−j−1(k−1)xhx,x=i−j−1(因为Bob
- 概率期望题目合集(1)
weixin_30443895
51Nod1632B君的连通我们可以看出删去$i$条边会有$i+1$个联通块,所以可以得出以下的式子:$ans=\sum_{i=0}^{n-1}(\frac{1}{2})^{n-1}\textrm{C}_{n-1}^{i}(i+1)$因为最后答案要乘上$2^{n-1}$,所以化简一下(倒序相加)可以得到$ans=(n+1)2^{n-2}$#include#include#include#inclu
- [Codeforces335E]Counting Skyscrapers(概率期望+数学证明)
FromATP
Codeforces数学乱搞题竟然需要推式子的概率期望
======这里放传送门======题解这题神死了。。。ATP想把那个在CF上强行加上【DP】这个tag的人吃掉。。。一开始吭哧了半天想了一个O(n2h)的东西根本不能做啊。。实际上这题就是一个推导,然后一个式子就出来了。。还有,Bob这个人P事真TM多。。。。【(╯‵□′)╯︵┻━┻】把CF的官方题解和翻译先链过来。果然还是中文看起来舒爽。。。那ATP这里就把题解上没有说的证明一点一点证一下吧。
- [Codeforces335E]Counting Skyscrapers(概率期望)
Clove_unique
题解概率期望
题目描述传送门题面翻译见:http://cogs.pro/cogs/problem/problem.php?pid=1921题解神题啊…神哭了…就知道Alice和Bob凑在一起肯定不干好事想了一节晚自习+两节课,只yy出了一种不靠谱的O(n2h)的东西…看题解发现不是dp,竟然是一道纯数学题…要特别注意的是这道题的高度和编号是岔劈着的,非常恶心cf官方题解:http://codeforces.co
- ZOJ_3569_Dr. Zomboss's Revenge(概率期望)
light_starlight
ACMZOJ概率和期望
Dr.Zomboss'sRevengeTimeLimit:2SecondsMemoryLimit:65536KBThesedaysMMisinterestedinthefinalstageofPlantsvsZombies,called"Dr.Zomboss'srevenge".Inthisstage,MMisprovidedwithanemptymapwithnrowsandmcolumnsas
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本