本文为高等数学的学习笔记,讲解导数与微分。欢迎交流
函数在 x 0 x_0 x0 处可导,取 x 0 x_0 x0 处的增量 Δ x \Delta x Δx:
f ′ ( x 0 ) = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\lim\limits_{\Delta x\to0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\to0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f′(x0)=Δx→0limΔxΔy=Δx→0limΔxf(x0+Δx)−f(x0)
或:
f ′ ( x 0 ) = lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0)=\lim\limits_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} f′(x0)=x→x0limx−x0f(x)−f(x0)
可记作 y ′ ∣ x = x 0 , d y d x ∣ x = x 0 y'|_{x=x_0},\frac{dy}{dx}|_{x=x_0} y′∣x=x0,dxdy∣x=x0 或 d f ( x ) d x ∣ x = x 0 \frac{df(x)}{dx}|_{x=x_0} dxdf(x)∣x=x0。
由极限存在的充要条件有,可导的充要条件为左右极限都存在且相等:
lim h → 0 − f ( x 0 + h ) − f ( x 0 ) x − x 0 , lim h → 0 + f ( x 0 + h ) − f ( x 0 ) x − x 0 \lim\limits_{h\to 0^-}\frac{f(x_0+h)-f(x_0)}{x-x_0},\quad \lim\limits_{h\to 0^+}\frac{f(x_0+h)-f(x_0)}{x-x_0} h→0−limx−x0f(x0+h)−f(x0),h→0+limx−x0f(x0+h)−f(x0)
注意:判断导数在闭区间可导要考虑端点的情况
在点 M ( x 0 , y 0 ) M(x_0,y_0) M(x0,y0) 处的切线方程为:
y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-y_0=f'(x_0)(x-x_0) y−y0=f′(x0)(x−x0)
法线方程为:
y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) y-y_0=-\frac{1}{f'(x_0)}(x-x_0) y−y0=−f′(x0)1(x−x0)
可导必连续,连续不一定可导。
( u v ) ′ = u ′ v − u v ′ v 2 (\frac{u}{v})'=\frac{u'v-uv'}{v^2} (vu)′=v2u′v−uv′
若函数可导,则反函数也可导:
[ f − 1 ( x ) ] ′ = 1 f ′ ( y ) , d y d x = 1 d x d y [f^{-1}(x)]'=\frac{1}{f'(y)},\quad \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} [f−1(x)]′=f′(y)1,dxdy=dydx1
反函数的导数=直接函数导数的倒数。
从内向外逐层求导:
d y d x = d y d u ⋅ d u d x , y ′ ( x ) = f ′ ( u ) g ′ ( x ) \frac{dy}{dx}=\frac{dy}{du}·\frac{du}{dx}, \qquad y'(x)=f'(u)g'(x) dxdy=dudy⋅dxdu,y′(x)=f′(u)g′(x)
( tan x ) ′ = sec 2 x ( cot x ) ′ = − csc 2 x (\tan x)'=\sec^2x \qquad (\cot x)'=-\csc^2x (tanx)′=sec2x(cotx)′=−csc2x
( sec x ) ′ = sec x tan x ( csc x ) ′ = − csc x cot x (\sec x)'=\sec x\tan x \qquad (\csc x)'=-\csc x\cot x (secx)′=secxtanx(cscx)′=−cscxcotx
( a x ) ′ = a x ln a ( log a x ) ′ = 1 x ln a (a^x)'=a^x\ln a \qquad (\log_ax)'=\frac{1}{x\ln a} (ax)′=axlna(logax)′=xlna1
( arcsin x ) ′ = 1 1 − x 2 ( arccos x ) ′ = − 1 1 − x 2 (\arcsin x)'=\frac{1}{\sqrt{1-x^2}} \qquad (\arccos x)'=-\frac{1}{\sqrt{1-x^2}} (arcsinx)′=1−x21(arccosx)′=−1−x21
( arctan x ) ′ = 1 1 + x 2 ( arccot ) ′ = − 1 1 + x 2 (\arctan x)'=\frac{1}{1+x^2} \qquad (\textrm{arccot})'=-\frac{1}{1+x^2} (arctanx)′=1+x21(arccot)′=−1+x21
初等函数的高阶导数:
( sin x ) ( n ) = sin ( x + n π 2 ) (\sin x)^{(n)}=\sin(x+n\frac{\pi}{2}) (sinx)(n)=sin(x+n2π)
( cos x ) ( n ) = sin ( x + n π 2 ) (\cos x)^{(n)}=\sin(x+n\frac{\pi}{2}) (cosx)(n)=sin(x+n2π)
[ ln ( 1 + x ) ] ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + x ) n [\ln(1+x)]^{(n)}=(-1)^{n-1}\frac{(n-1)!}{(1+x)^n} [ln(1+x)](n)=(−1)n−1(1+x)n(n−1)!
莱布尼兹公式:
( u v ) ( n ) = u ( n ) v + n u ( n − 1 ) v ′ + n ( n − 1 ) 2 ! u n − 2 v ′ ′ + . . . (uv)^{(n)}=u^{(n)}v+nu^{(n-1)}v'+\frac{n(n-1)}{2!}u^{n-2}v''+... (uv)(n)=u(n)v+nu(n−1)v′+2!n(n−1)un−2v′′+...
+ n ( n − 1 ) . . . ( n − k + 1 ) k ! u ( n − k ) v ( k ) + u v ( n ) +\frac{n(n-1)...(n-k+1)}{k!}u^{(n-k)}v^{(k)}+uv^{(n)} +k!n(n−1)...(n−k+1)u(n−k)v(k)+uv(n)
记忆技巧,按二项式定理展开:
( u + v ) n = u n v 0 + n u n − 1 v 1 + n ( n − 1 ) 2 ! u n − 2 v 2 + . . . + u 0 v n (u+v)^n=u^nv^0+nu^{n-1}v^1+\frac{n(n-1)}{2!}u^{n-2}v^2+...+u^0v^n (u+v)n=unv0+nun−1v1+2!n(n−1)un−2v2+...+u0vn
即:
( u + v ) n = ∑ k = 0 n C n k u n − k v k (u+v)^n=\sum\limits_{k=0}^nC_n^ku^{n-k}v^k (u+v)n=k=0∑nCnkun−kvk
将 ( u + v ) (u+v) (u+v) 换为 ( u v ) (uv) (uv), k k k 次幂换为 k k k 阶导数:
( u v ) n = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^n=\sum\limits_{k=0}^nC_n^ku^{(n-k)}v^{(k)} (uv)n=k=0∑nCnku(n−k)v(k)
将隐函数两边同时对 x x x 求导,注意此时 y y y 是 x x x 的函数。
对数求导法:函数两边取对数,再求出 y y y 的导数。当底数和指数都含有变量时,一般取对数进行处理。
导数公式:
d y d x = ψ ′ ( t ) ϕ ′ ( t ) \frac{dy}{dx}=\frac{\psi'(t)}{\phi'(t)} dxdy=ϕ′(t)ψ′(t)
二阶导数公式:
d 2 y d x 2 = ψ ′ ′ ( t ) ϕ ′ ( t ) − ψ ′ ( t ) ϕ ′ ′ ( t ) ϕ ′ 3 ( t ) \frac{d^2y}{dx^2}=\frac{\psi''(t)\phi'(t)-\psi'(t)\phi''(t)}{\phi'^3(t)} dx2d2y=ϕ′3(t)ψ′′(t)ϕ′(t)−ψ′(t)ϕ′′(t)
可微的充要条件是可导,且微分为 d y = f ′ ( x 0 ) Δ x dy=f'(x_0)\Delta x dy=f′(x0)Δx
d ( u ± v ) = d u + d v d(u±v)=du+dv d(u±v)=du+dv
d ( C u ) = C d u d(Cu)=Cdu d(Cu)=Cdu
d ( u v ) = v d u + u d v d(uv)=vdu+udv d(uv)=vdu+udv
d ( u v ) = v d u − u d v v 2 d(\frac{u}{v})=\frac{vdu-udv}{v^2} d(vu)=v2vdu−udv
d y = f ′ ( u ) d u = f ′ ( u ) g ′ ( x ) d x dy=f'(u)du=f'(u)g'(x)dx dy=f′(u)du=f′(u)g′(x)dx
微分形式不变性:当变换自变量时,微分形式 d y = f ′ ( u ) d u dy=f'(u)du dy=f′(u)du 不改变
略