- AI大模型副业变现之路,有技术就有收入!
AI大模型-王哥
人工智能AI大模型大模型大模型学习大模型教程大模型入门
在当今时代,AI大模型的应用越来越广泛,利用这些技术开展副业赚钱已成为可能。以下是一份详细的指南,帮助你了解需要学习的内容以及如何操作。一、需要学习的内容基础知识储备(1)数学知识:线性代数、概率论与数理统计、微积分等,这些是理解AI算法的基础。(2)编程技能:掌握Python编程语言,因为Python在AI领域有丰富的库和框架支持。(3)机器学习原理:了解常见的机器学习算法,如线性回归、决策树、
- 2019-03-20记录及学习计划更正
逆风飞翔的鸟
今天早晨早早的就坐上了返回学校的高铁,自己复习的进度稍慢了一些,不过没关系,这几天再追回来,最近发现虽然自己数学的做题能力有所提升,但是熟练程度还差很多,所以接下来高等数学要多做题,线性代数基础已经复习完毕,不能丢下,每天要做一定量的练习来保持住自己的水平。概率论与数理统计自己感觉有些困难,需要从课本开始认真的复习。关于英语我已经用百词斩背了有400左右的单词了,但是不是很扎实,所以自己要提升自己
- 【个人学习笔记】概率论与数理统计知识梳理【五】
已经是全速前进了
概率论
文章目录第五章、大数定律及中心极限定理一、大数定律1.1基本概念1.2弱大数定理二、中心极限定理独立同分布的中心极限定理定理总结第五章、大数定律及中心极限定理写博客比想象中费劲得多,公式得敲好久,所以只得随缘更更了,想写一些机器学习相关的东西,但是强迫症又不允许我把这个扔掉不管,我太难了Orz这一节的内容比较深,即使我是一个喜欢数学的工科生,也没有精力再去深究了,各式各样的大数定律及中心极限定理我
- 概率论与数理统计实验 附源码及实验报告 可打包为exe
货又星
概率论经验分享笔记python开源
Hi,I’m@货又星I’minterestedin…I’mcurrentlylearning…I’mlookingtocollaborateon…Howtoreachme…README目录(持续更新中)各种错误处理、爬虫实战及模板、百度智能云人脸识别、计算机视觉深度学习CNN图像识别与分类、PaddlePaddle自然语言处理知识图谱、GitHub、运维…WeChat:1297767084GitH
- 概率论与数理统计——二、随机变量及其分布
米妮爱分享
1随机变量随机变量是把样本S映射到R(实值单值)函数随机变量的引入可以来描述各种随机现象,并能利用数学分析的方法对随机实验的结果进行深入广泛的研究和讨论。2离散随机变量及其分布律(一)(0-1)分布(二)伯努力试验、二项分布(三)泊松分布3随机变量的分布函数计算分布函数时,根据其分布律,计算某一范围的概率时,左边x是小于不等于x的,当等于时,拆开的等式在3.1中还需要加上等于此值的概率,见例子。4
- 如何快速入门深度学习
人生万事须自为,跬步江山即寥廓。
机器学习人工智能chatgpt
深度学习是人工智能领域的一个重要分支,它模拟人脑的神经网络结构,通过大量的数据训练模型,使计算机能够自动学习和理解数据。深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。如果你想快速入门深度学习,可以按照以下步骤进行:1.学习基础知识在学习深度学习之前,你需要具备一定的数学基础,包括线性代数、概率论与数理统计、微积分等。此外,你还需要掌握一门编程语言,如Python,因为大多数深度
- 概率论与数理统计 第八章 假设检验
Jarkata
课前导读统计推断的另一类重要问题是假设检验问题。参数估计的主要任务是找参数值等于多少,或在哪个范围内取值。而假设检验则主要是看参数的值是否等于某个特定的值。通常进行假设检验即选定一个假设,确定用以决策的拒绝域的形式,构造一个检验统计量,求出拒绝域或检验统计量的p值,查看结果是否落在拒绝域内或p值是否小于显著性水平,做出决策的一个过程。第一节检验的基本原理举个例子,体现假设检验的思想:假设检验的统计
- 考研计划 东南大学
风与易水
考研学习
考研计划2021考研自用,目前已经上岸东南大学,祝各位顺利!数一:高数、线代、概率论与数理统计使用参考资料:1.《同济高数、浙大概率论与数理统计》2.《李永乐基础强化系列材料》3.武忠祥教学视频4.李林8805.武老师的高数辅导讲义+李永乐线代讲义5.李林的1086.《李林冲刺6套卷,李林预测4套卷》复习策略:1.2月初~6月底第一轮打基础,以武忠祥2020视频【教材(查阅相关知识点)】为主,深刻
- 武忠祥2025高等数学,基础阶段的百度网盘+视频及PDF
m0_54050778
pdf概率论
考研数学武忠祥基础主要学习以下几个方面的内容:1.微积分:主要包括极限、连续、导数、积分等概念,以及它们的基本性质和运算方法。2.线性代数:主要包括向量、向量空间、线性方程组、矩阵、行列式、特征值和特征向量等概念,以及它们的基本性质和运算方法。3概率论与数理统计:主要包括随机事件和概率、条件概率、独立性、随机变量及其分布、数学期望方差和协方差、大数定律和中心极限定理等概念以及它们的基本性质和运算方
- 大二下 课程安排
三冬四夏会不会有点漫长
#大二下计划
专业选修web前端开发信息与网络安全必修数据库原理4概率论与数理统计4软件设计与体系结构3编译技术3软件设计实践2大学体育1选修(待更新)目标大二下一定要好好学习,不然最后总的排名真的就垫底了,大一上绩点专业排名33/139,大一下绩点专业排名91/139,大二上待更新,整个大一绩点专业排名71/139,希望大二下能尽自己的全力学,绩点考到尽可能高,把自己不太行的过往的成绩往上拉一拉
- 不知道几天能学完《概率论与数理统计》之1.1随机统计
不安全的安保
不知道几天能学完概率论概率论
引言确定性(必然):一定发生/一定不发生随机性(偶然):可能发生/不发生统计规律:对事情做出大量重复性的实验试图找出某种规律1.1.1随机事件与随机试验试验:为了找出实践规律,对客观事物进行观察、测量,然后进行科学实验等等这类统称为试验随机试验:使用E表示三个要求相同条件下可以重复实验结果不止一个无法预测哪个结果会出现举个例子:抛硬币随机抛硬币可以出现两次正面硬币有正面和反面在硬币落地之前无法得知
- 2024年高校建设大数据实验室建设的意义
泰迪智能科技
大数据实验室大数据
数据挖掘与大数据分析是以计算机基础为基础,以挖掘算法为核心,紧密面向行业应用的一门综合性学科。其主要技术涉及概率论与数理统计、数据挖掘、算法与数据结构、计算机网络、并行计算等多个专业方向,因此该学科对于实验室具有较高的专业要求。实验室不仅要提供基础的开发环境,还要提供大数据的运算环境以及用于实验的实战大数据案例。这些实验素材的准备均需专业的大数据实验室作为支撑。目前,在我国高校的专业设置上与数据挖
- 概率论与数理统计————3.随机变量及其分布
辣个骑士
概率论与数理统计概率论
一、随机变量设E是一个随机试验,S为样本空间,样本空间的任意样本点e可以通过特定的对应法则X,使得每个样本点都有与之对应的数对应,则称X=X(e)为随机变量二、分布函数分布函数:设X为随机变量,x是任意实数,则事件{Xx}为随机变量X的分布函数,记为F(x)即:F(x)=P(Xx)(1)几何意义:(2)某点处的概率:P(a)=P(Xa)-P(X0;F(x)=cx0三、离散型随机变量及其分布离散型随
- 概率论与数理统计————古典概型、几何概型和条件概率
辣个骑士
概率论与数理统计概率论
一、古典概型特点(1)有限性:试验S的样本空间的有限集合(2)等可能性:每个样本点发生的概率是相等的公式:P(A)=A为随机事件的样本点数;S是样本空间二、几何概型计算公式:p(A)=A的长度、面积或体积S的长度、面积或体积三、条件概率条件概率:设A、B为两个事件,且p(B)>0,则在事件B条件下事件A发生的概率为P(A|B)=p(|A)=1-P(B|A)乘法公式:事件的独立性:若事件A、B满足P
- 概率论与数理统计————1.随机事件与概率
辣个骑士
概率论与数理统计概率论
一、随机事件随机试验:满足三个特点(1)可重复性:可在相同的条件下重复进行(2)可预知性:每次试验的可能不止一个,事先知道试验的所有可能结果(3)不确定性:每次试验不能确定实验结果随机试验记作E样本空间:随机试验E的所有可能的结果构成的集合样本点:样本空间的每个元素是一个样本点随机事件:样本空间的子集为一个随机事件(事件放生:该事件的某个样本点出现)必然事件:必然发生的事件不可能事件:不可能发生的
- 不动点迭代c语言for循环,概率论与数理统计-西北师范大学数学与统计学院.PDF
Jezzy WANG
不动点迭代c语言for循环
概率论与数理统计-西北师范大学数学与统计学院数学与统计学院数学与应用数学专业云亭班专业平台必修课程教学大纲数学与统计学院数学与应用数学专业云亭班专业平台必修课程包括以下11门课程:概率论与数理统计、实变函数、泛函分析、拓扑学、微分几何、C语言、近世代数、运筹学、常微分方程、复变函数、大学物理。概率论与数理统计一、说明课程性质:该课程是数学与应用数学专业云亭班专业平台必修课程之一,第5学期开设。周4
- 概率论与数理统计-第7章 假设检验
Ciian
概率论与数理统计概率论
假设检验的基本概念二、假设检验的基本思想假设检验的基本思想实质上是带有某种概率性质的反证法,为了检验一个假设H0,是否正确,首先假定该假设H0正确,然后根据抽取到的样本对假设H0作出接受或拒绝的决策,如果样本观察值导致了不合理的现象发生,就应拒绝假设H0,否则应接受假设H0·三、假设检验的两类错误第一类错误当假设H0正确时,小概率事件也有可能发生,此时,我们会拒绝假设H0,因而犯了“弃真”的错误,
- 概率论与数理统计系列笔记之第六章——参数估计
欧阳妙妙
概率论
概率论与数理统计笔记(第六章——参数估计)对于统计专业来说,书本知识总有遗忘,翻看教材又太麻烦,于是打算记下笔记与自己的一些思考,主要参考用书是茆诗松老师编写的《概率论与数理统计教程》,其他知识待后续书籍补充。文章目录概率论与数理统计笔记(第六章——参数估计)6.1点估计的概念以及无偏性6.1.1点估计及无偏性6.1.2有效性6.2矩估计以及相合性6.2.1替换原理和矩法估计6.2.2概率函数已知
- 【概率论与数理统计】第二章知识点复习与习题
小萨摩!
期末考试概率论
思维导图笔记一、随机变量定义:设随机试验的样本空间为S={e},X=X(e)是定义在样本空间S上的实值单值函数。称X=X(e)为随机变量。类似于函数、映射的概念。既然类似于函数,就有定义域和至于,通过定义知道,定义域为样本空间,值域为实数集。即对随机事件数量化。二、离散型随机变量及其分布律1离散型随机变量定义:全部可能取到的值是有限个或可列无限多个的随机变量。这里有限一定可列,可列不一定有限。而分
- 张宇1000题概率论与数理统计 第九章 参数估计与假设检验
古月忻
#概率论张宇考研其他
目录AAA组6.设x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn是来自总体X∼N(μ,σ2)X\simN(\mu,\sigma^2)X∼N(μ,σ2)(μ,σ2\mu,\sigma^2μ,σ2都未知)的简单随机样本的观测值,则σ2\sigma^2σ2的最大似然估计值为( )。(A)1n∑i=1n(xi−μ)2;(A)\cfrac{1}{n}\displaystyl
- 概率论与数理统计 Chapter4. 参数估计
Espresso Macchiato
基础数学概率论参数估计极大似然估计矩估计区间估计
概率论与数理统计Chapter4.参数估计1.基础概念1.总体2.样品3.统计量1.样本方差2.k阶原点矩3.k阶中心矩2.参数的点估计1.矩估计1.正态分布2.指数分布3.均匀分布4.二项分布5.泊松分布2.极大似然估计1.正态分布2.指数分布3.二项分布4.均匀分布5.泊松分布3.贝叶斯估计3.点估计的优良性准则1.无偏性1.均值2.方差3.标准差2.最小方差无偏估计3.相合性4.区间估计1.
- 概率论与数理统计浙大第五版 第七章 部分习题+R代码
⑨充满智慧与力量⑨
概率论
习题七1、μ1=E(X)=μ=1n∑i=1nxi=18(74.001+74.005+74.003+74.001+74.000+73.998+74.006+74.002)=74.002\mu_1=E(X)=\mu\\=\frac{1}{n}\sum_{i=1}^nx_i\\=\frac{1}{8}(74.001+74.005+74.003+74.001+74.000+73.998+74.006+74
- 概率论与数理统计-第6章 参数估计
Ciian
概率论与数理统计概率论
6.1点估计问题概述一、点估计的概念二、评价估计量的标准无偏性定义1:设^θ(X1,…,Xn)是未知参数θ的估计量,若E(^θ)=θ,则称^θ为θ的无偏估计量定理1:设X1,…,Xn,为取自总体X的样本,总体X的均值为μ,方差为σ2,则(I)样本均值¯X是μ的无偏估计量;(2)样本方差S2是σ2的无偏估计量;&1有效性无偏性是有效性的前提。定义2:例题:*1相合性(一致性)我们不仅希望一个估计量是
- 最小描述长度MDL(Minimum Description Length)及信息论介绍
Avasla
机器学习算法概率论
信息论介绍信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化。它最初被发明是用来研究在一个含有噪声的信道上用离散的字母表来发送消息,例如通过无线电传输来通信。在这种情况下,信息论告诉我们如何对消息设计最有编码以及计算消息的期望长度,这些消息是使用多种不同编码机制、从特斯能够的概率分布上采样得到的。百度百科的解释是:信息论是运用概率论与数理统计的方法研究信息、信息熵、通信系统、
- 概率论与数理统计(期末复习)
蓝桉802
概率论
第四章数学期望与方差1.期望的性质:E(C)=C;E(X+C)=E(X)+C;E(CX)=CE(X);E(kX+C)=kE(X)+C;E(X+Y)=E(X)+E(Y);E(X-Y)=E(X-Y);;X与Y独立:E(XY)=E(X)E(Y);2.方差的性质:D(X)=E(X^2)-[E(X)]^2D(C)=0;D(X+C)=D(X);D(CX)=C^2D(X);D(kX+C)=k^2D(X);X与Y
- 概率论与数理统计 知识点+课后习题
兑生
大学课程概率论
文章目录[学习资源整合](https://www.cnblogs.com/duisheng/p/17872980.html)总复习知识点⭐常用分布的数学期望和方差选择题填空题大题1.概率2.概率3.概率4.P5.概率6.概率密度函数F(X)F(X)F(X)7.分布列求方差V(X)V(X)V(X)8.求分布函数F(X)F(X)F(X)9.求F(X)F(X)F(X)和P(X)P(X)P(X)10.求未
- AI技术体系和领域浅总结
TisUs
数学基础微积分《高等数学》线性代数《线性代数》概率统计《概率论与数理统计》信息论《信息论基础》(机械工业出版社)集合论和图论《离散数学》博弈论《博弈论》(中国人民大学出版社)张量分析现代几何计算机基础计算机原理程序设计语言操作系统分布式系统算法基础机器学习算法机器学习基础(估计方法特征工程)线性模型(线性回归)逻辑回归决策树模型(GBDT)支持向量机贝叶斯分类器神经网络(深度学习):MLPCNNR
- 概率论与数理统计基础知识
竹叶青lvye
程序员的数学概率论
计算机视觉一些算法中常会用到概论的一些知识,为了便于理解和快速回忆,博主这边对常用的一些知识点做下整理,主要来源于如下这本书籍。1.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。2.事件的概率是衡量该事件发生的可能性的量度。概率论(数学分支)_百度百科概率(统计学术语)_百度百科3.随机事件,是指的一个事
- 二月
goldfish2017
2018年已经过完一个月了,一月份完成了公司搬办公室,开年会中了个末等奖,修车的钱给保险公司也都给报销了,部门公司也彻底成为全资子公司,原来老板特意把年终奖提前给发了,手头能多少宽裕点了。如果考试成绩不理想,还是年后想办法谋求再回北京找工作,如果成绩还可以,就需要准备加试复试。一月份完成了概率论与数理统计的通读,看了两三遍课本和视频才大概了解,编译原理在年前完成通读教材一遍。减少同时关注事情的数量
- 极大似然估计定义及例题
脑子不好真君
数学概率论与数理统计极大似然估计
一、极大似然估计定义实际上就是说,我们在总体中抽取样本,我们希望在样本中发生的情况最大化,用在样本中发生的情况去估计总体中发生情况。二、例题注意:对分布函数求导得概率密度函数三、参考书目茆诗松,周纪芗等.概率论与数理统计(第三版).中国统计出版社,2007王松桂等.概率论与数理统计(第三版).科学出版社,2011同济大学数学系.概率论与数理统计.人民邮电出版社,2017
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb