RANSAC算法(RANdom SAmple Consensus随机抽样一致)

它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法——它有一定的概率得出一个合理的结果;为了提高概率必须提高迭代次数。该算法最早由Fischler和Bolles于1981年提出。

光看文字还是太抽象了,我们再用图描述

RANSAC的基本假设是:
(1)数据由“局内点”组成,例如:数据的分布可以用一些模型参数来解释;
(2)“局外点”是不能适应该模型的数据;
(3)除此之外的数据属于噪声。

而下图二里面、蓝色部分为局内点,而红色部分就是局外点,而这个算法要算出的就是蓝色部分那个模型的参数

RANSAC算法(RANdom SAmple Consensus随机抽样一致)_第1张图片(图二)

RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数。

在上图二中  左半部分灰色的点为观测数据,一个可以解释或者适应于观测数据的参数化模型 我们可以在这个图定义为一条直线,如y=kx + b;

一些可信的参数指的就是指定的局内点范围。而k,和b就是我们需要用RANSAC算法求出来的

RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证:

  1.有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
  2.用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
     3.如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
     4.然后,用所有假设的局内点去重新估计模型,因为它仅仅被初始的假设局内点估计过。
     5.最后,通过估计局内点与模型的错误率来评估模型。
这个过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。

这个算法用图二的例子说明就是先随机找到内点,计算k1和b1,再用这个模型算其他内点是不是也满足y=k1x+b2,评估模型

再跟后面的两个随机的内点算出来的k2和b2比较模型评估值,不停迭代最后找到最优点

 

我再用图一的模型说明一下RANSAC算法

RANSAC算法(RANdom SAmple Consensus随机抽样一致)_第2张图片(图1)

RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数。

模型对应的是空间中一个点云数据到另外一个点云数据的旋转以及平移。
第一步随机得到的是一个点云中的点对作 ,利用其不变特征(两点距离,两点法向量夹角)作为哈希表的索引值搜索另一个点云中的一对对应点对,然后计算得到旋转及平移的参数值。
然后适用变换,找到其他局内点,并在找到局内点之后重新计算旋转及平移为下一个状态。
然后迭代上述过程,找到最终的位置
其中观测数据就是PB,一个可以解释或者适应于观测数据的参数化模型是 四元数 旋转,并平移
可信的参数是两个点对的不变特征(两点距离,两点法向量夹角)
 
也就是说用RANSAC算法是 从PB找一个随机的点对计算不变特征,找目标点云PR里特征最像的来匹配,计算qR和qT
 
 
RANSAC算法成立的条件里主要是先要有一个模型和确定的特征,用确定的特征计算模型的具体参数

关于算法的源代码,Ziv Yaniv曾经写一个不错的C++版本,我在关键处增补了注释:
C代码   收藏代码
  1. #include   
  2. #include "LineParamEstimator.h"  
  3.   
  4. LineParamEstimator::LineParamEstimator(double delta) : m_deltaSquared(delta*delta) {}  
  5. /*****************************************************************************/  
  6. /* 
  7.  * Compute the line parameters  [n_x,n_y,a_x,a_y] 
  8.  * 通过输入的两点来确定所在直线,采用法线向量的方式来表示,以兼容平行或垂直的情况 
  9.  * 其中n_x,n_y为归一化后,与原点构成的法线向量,a_x,a_y为直线上任意一点 
  10.  */  
  11. void LineParamEstimator::estimate(std::vector &data,   
  12.                                                                     std::vector<double> ¶meters)  
  13. {  
  14.     parameters.clear();  
  15.     if(data.size()<2)  
  16.         return;  
  17.     double nx = data[1]->y - data[0]->y;  
  18.     double ny = data[0]->x - data[1]->x;// 原始直线的斜率为K,则法线的斜率为-1/k  
  19.     double norm = sqrt(nx*nx + ny*ny);  
  20.       
  21.     parameters.push_back(nx/norm);  
  22.     parameters.push_back(ny/norm);  
  23.     parameters.push_back(data[0]->x);  
  24.     parameters.push_back(data[0]->y);          
  25. }  
  26. /*****************************************************************************/  
  27. /* 
  28.  * Compute the line parameters  [n_x,n_y,a_x,a_y] 
  29.  * 使用最小二乘法,从输入点中拟合出确定直线模型的所需参量 
  30.  */  
  31. void LineParamEstimator::leastSquaresEstimate(std::vector &data,   
  32.                                                                                             std::vector<double> ¶meters)  
  33. {  
  34.     double meanX, meanY, nx, ny, norm;  
  35.     double covMat11, covMat12, covMat21, covMat22; // The entries of the symmetric covarinace matrix  
  36.     int i, dataSize = data.size();  
  37.   
  38.     parameters.clear();  
  39.     if(data.size()<2)  
  40.         return;  
  41.   
  42.     meanX = meanY = 0.0;  
  43.     covMat11 = covMat12 = covMat21 = covMat22 = 0;  
  44.     for(i=0; i
  45.         meanX +=data[i]->x;  
  46.         meanY +=data[i]->y;  
  47.   
  48.         covMat11    +=data[i]->x * data[i]->x;  
  49.         covMat12    +=data[i]->x * data[i]->y;  
  50.         covMat22    +=data[i]->y * data[i]->y;  
  51.     }  
  52.   
  53.     meanX/=dataSize;  
  54.     meanY/=dataSize;  
  55.   
  56.     covMat11 -= dataSize*meanX*meanX;  
  57.         covMat12 -= dataSize*meanX*meanY;  
  58.     covMat22 -= dataSize*meanY*meanY;  
  59.     covMat21 = covMat12;  
  60.   
  61.     if(covMat11<1e-12) {  
  62.         nx = 1.0;  
  63.             ny = 0.0;  
  64.     }  
  65.     else {      //lamda1 is the largest eigen-value of the covariance matrix   
  66.                //and is used to compute the eigne-vector corresponding to the smallest  
  67.                //eigenvalue, which isn't computed explicitly.  
  68.         double lamda1 = (covMat11 + covMat22 + sqrt((covMat11-covMat22)*(covMat11-covMat22) + 4*covMat12*covMat12)) / 2.0;  
  69.         nx = -covMat12;  
  70.         ny = lamda1 - covMat22;  
  71.         norm = sqrt(nx*nx + ny*ny);  
  72.         nx/=norm;  
  73.         ny/=norm;  
  74.     }  
  75.     parameters.push_back(nx);  
  76.     parameters.push_back(ny);  
  77.     parameters.push_back(meanX);  
  78.     parameters.push_back(meanY);  
  79. }  
  80. /*****************************************************************************/  
  81. /* 
  82.  * Given the line parameters  [n_x,n_y,a_x,a_y] check if 
  83.  * [n_x, n_y] dot [data.x-a_x, data.y-a_y] < m_delta 
  84.  * 通过与已知法线的点乘结果,确定待测点与已知直线的匹配程度;结果越小则越符合,为 
  85.  * 零则表明点在直线上 
  86.  */  
  87. bool LineParamEstimator::agree(std::vector<double> ¶meters, Point2D &data)  
  88. {  
  89.     double signedDistance = parameters[0]*(data.x-parameters[2]) + parameters[1]*(data.y-parameters[3]);   
  90.     return ((signedDistance*signedDistance) < m_deltaSquared);  
  91. }  


RANSAC寻找匹配的代码如下:
C代码   收藏代码
  1. /*****************************************************************************/  
  2. template<class T, class S>  
  3. double Ransac::compute(std::vector ¶meters,   
  4.                                                       ParameterEsitmator *paramEstimator ,   
  5.                                                     std::vector &data,   
  6.                                                     int numForEstimate)  
  7. {  
  8.     std::vector leastSquaresEstimateData;  
  9.     int numDataObjects = data.size();  
  10.     int numVotesForBest = -1;  
  11.     int *arr = new int[numForEstimate];// numForEstimate表示拟合模型所需要的最少点数,对本例的直线来说,该值为2  
  12.     short *curVotes = new short[numDataObjects];  //one if data[i] agrees with the current model, otherwise zero  
  13.     short *bestVotes = new short[numDataObjects];  //one if data[i] agrees with the best model, otherwise zero  
  14.       
  15.   
  16.               //there are less data objects than the minimum required for an exact fit  
  17.     if(numDataObjects < numForEstimate)   
  18.         return 0;  
  19.         // 计算所有可能的直线,寻找其中误差最小的解。对于100点的直线拟合来说,大约需要100*99*0.5=4950次运算,复杂度无疑是庞大的。一般采用随机选取子集的方式。  
  20.     computeAllChoices(paramEstimator,data,numForEstimate,  
  21.                                         bestVotes, curVotes, numVotesForBest, 0, data.size(), numForEstimate, 0, arr);  
  22.   
  23.        //compute the least squares estimate using the largest sub set  
  24.     for(int j=0; j
  25.         if(bestVotes[j])  
  26.             leastSquaresEstimateData.push_back(&(data[j]));  
  27.     }  
  28.         // 对局内点再次用最小二乘法拟合出模型  
  29.     paramEstimator->leastSquaresEstimate(leastSquaresEstimateData,parameters);  
  30.   
  31.     delete [] arr;  
  32.     delete [] bestVotes;  
  33.     delete [] curVotes;   
  34.   
  35.     return (double)leastSquaresEstimateData.size()/(double)numDataObjects;  
  36. }  


在模型确定以及最大迭代次数允许的情况下,RANSAC总是能找到最优解。经过我的实验,对于包含80%误差的数据集,RANSAC的效果远优于直接的最小二乘法。

 

文章出处:http://www.cnblogs.com/yin52133/本文可自行转载,但转载时记得给出原文链接

你可能感兴趣的:(算法理解)