NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:
① 实际的数据
② 描述这些数据的元数据
import numpy as np
ar = np.array([1,2,3,4,5,6,7])
print(ar) # 输出数组,注意数组的格式:中括号,元素之间没有逗号(和列表区分)
print(ar.ndim) # 输出数组维度的个数(轴数),或者说“秩”,维度的数量也称rank
print(ar.shape) # 数组的维度,对于n行m列的数组,shape为(n,m)
print(ar.size) # 数组的元素总数,对于n行m列的数组,元素总数为n*m
print(ar.dtype) # 数组中元素的类型,类似type()(注意了,type()是函数,.dtype是方法)
print(ar.itemsize) # 数组中每个元素的字节大小,int32l类型字节为4,float64的字节为8
print(ar.data) # 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。
ar # 交互方式下输出,会有array(数组)
# 数组的基本属性
# ① 数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推
# ② 在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量:
# 比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组
# 所以一维数组就是NumPy中的轴(axes),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。
# 而轴的数量——秩,就是数组的维数。
-----------------------------------------------------------------------
[1 2 3 4 5 6 7]
1
(7,)
7
int32
4
<memory at 0x0000000005927108>
array([1, 2, 3, 4, 5, 6, 7])
ar1 = np.array(range(10)) # 整型
ar2 = np.array([1,2,3.14,4,5]) # 浮点型
ar3 = np.array([[1,2,3],('a','b','c')]) # 二维数组:嵌套序列(列表,元祖均可)
ar4 = np.array([[1,2,3],('a','b','c','d')]) # 注意嵌套序列数量不一会怎么样
print(ar1,type(ar1),ar1.dtype)
print(ar2,type(ar2),ar2.dtype)
print(ar3,ar3.shape,ar3.ndim,ar3.size) # 二维数组,共6个元素
print(ar4,ar4.shape,ar4.ndim,ar4.size) # 一维数组,共2个元素
-----------------------------------------------------------------------
print(np.arange(10)) # 返回0-9,整型
print(np.arange(10.0)) # 返回0.0-9.0,浮点型
print(np.arange(5,12)) # 返回5-11
print(np.arange(5.0,12,2)) # 返回5.0-12.0,步长为2
print(np.arange(10000)) # 如果数组太大而无法打印,NumPy会自动跳过数组的中心部分,并只打印边角:
-----------------------------------------------------------------------
[0 1 2 3 4 5 6 7 8 9]
[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
[ 5 6 7 8 9 10 11]
[ 5. 7. 9. 11.]
[ 0 1 2 ..., 9997 9998 9999]
ar1 = np.linspace(2.0, 3.0, num=5)
ar2 = np.linspace(2.0, 3.0, num=5, endpoint=False)
ar3 = np.linspace(2.0, 3.0, num=5, retstep=True)
print(ar1,type(ar1))
print(ar2)
print(ar3,type(ar3))
# numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
# start:起始值,stop:结束值
# num:生成样本数,默认为50
# endpoint:如果为真,则停止是最后一个样本。否则,不包括在内。默认值为True。
# retstep:如果为真,返回(样本,步骤),其中步长是样本之间的间距 → 输出为一个包含2个元素的元祖,第一个元素为array,第二个为步长实际值
-----------------------------------------------------------------------
[ 2. 2.25 2.5 2.75 3. ] <class 'numpy.ndarray'>
[ 2. 2.2 2.4 2.6 2.8]
(array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) <class 'tuple'>
ar1 = np.zeros(5)
ar2 = np.zeros((2,2), dtype = int)
print(ar1,ar1.dtype)
print(ar2,ar2.dtype)
print('------')
# numpy.zeros(shape, dtype=float, order='C'):返回给定形状和类型的新数组,用零填充。
# shape:数组纬度,二维以上需要用(),且输入参数为整数
# dtype:数据类型,默认numpy.float64
# order:是否在存储器中以C或Fortran连续(按行或列方式)存储多维数据。
ar3 = np.array([list(range(5)),list(range(5,10))])
ar4 = np.zeros_like(ar3)
print(ar3)
print(ar4)
print('------')
# 返回具有与给定数组相同的形状和类型的零数组,这里ar4根据ar3的形状和dtype创建一个全0的数组
ar5 = np.ones(9)
ar6 = np.ones((2,3,4))
ar7 = np.ones_like(ar3)
print(ar5)
print(ar6)
print(ar7)
# ones()/ones_like()和zeros()/zeros_like()一样,只是填充为1
-----------------------------------------------------------------------
[ 0. 0. 0. 0. 0.] float64
[[0 0]
[0 0]] int32
------
[[0 1 2 3 4]
[5 6 7 8 9]]
[[0 0 0 0 0]
[0 0 0 0 0]]
------
[ 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[[[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]]
[[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]]]
[[1 1 1 1 1]
[1 1 1 1 1]]
print(np.eye(5))
# 创建一个正方的N*N的单位矩阵,对角线值为1,其余为0
-----------------------------------------------------------------------
[[ 1. 0. 0. 0. 0.]
[ 0. 1. 0. 0. 0.]
[ 0. 0. 1. 0. 0.]
[ 0. 0. 0. 1. 0.]
[ 0. 0. 0. 0. 1.]]
# 作业1:分别按照要求,生成一个一维数组、二维数组,并且查看其shape
a1 = np.array([1,2,'a','hello',[1,2,3],{'one':100,'two':200}])
a2 = np.array([list(range(6)),
list('abcdef'),
[True, False, True, False, True, True]])
print(a1,'\na1的shape为:',a1.shape, '\n-------')
print(a2,'\na2的shape为:',a2.shape, '\n-------')
# 作业2:生成一个一维数组,起始值为5,终点值为15,样本数为10个
print(np.arange(5,15))
# 作业3:按照要求创建以下数组
print(np.zeros((4,4)), '\n-------')
print(np.ones((2,3)), '\n-------')
print(np.eye(3, dtype='int'), '\n-------')