- 算法学习笔记:概率与期望
Plozia
数学/数论学习笔记+专项训练
概率与期望1.前言2.定义3.理解4.期望方程5.总结1.前言概率我们很熟,在数学课本里面我们就已经学到过概率的基本定义以及计算方式。期望我们不熟,他与概率密切相关,计算方式基于概率。2.定义概率的计算方式不必我多说,各位在数学课中都有了解。而期望,从某种意义上来讲其实就是一个加了权值的概率。我将使用一个例子来说明期望是什么:假设某一天小z有一场满分为100分的数学考试。他妈妈说:“儿子,如果你能
- [算法学习笔记](超全)概率与期望
L('ω')┘脏脏包└('ω')」
c++题解算法
引子先来讲个故事······话说在神奇的OI大陆上,有一只papermouse有一天,它去商场购物,正好是11.11,商店有活动它很荣幸被选上给1832抽奖在抽奖箱里,有3个篮蓝球,12个红球papermouse能抽3次蒟蒻的papermouse就疑惑了:抽到至少1个篮蓝球的概率是多少???Answer:总共有15个球只抽到1个篮蓝球的概率是0.435165(很好理解吧,在4个篮蓝球里取一个,再在
- 专题·数学概率与期望【including 条件概率,贝叶斯定理, 全概率公式,数学期望, 绿豆蛙的归宿
樱狸❀
数论数论数学期望概率
初见安~~~又开启数论的探索啦~~:)一。概率1.基本定义在概率论中,我们把一个随机事件的一个可能结果称为其样本点,其所有样本点构成的集合称之为样本空间。(注意,随机事件并不一定只有一种可能结果)在样本空间中,我们称事件所包含的子集为随机事件。概率的定义就很简单了,我们也都知道样本空间中的任意随机事件的概率不会超过1不会小于0.就比如我们抛硬币连续扔三次(不考虑侧面稳落地),有8中可能:AAA,A
- 第十六章 隐马尔科夫模型
小酒馆燃着灯
机器学习手写AI深度学习机器学习
文章目录简介概念随机变量与随机过程马尔可夫链隐含马尔可夫模型两个基本假设三个基本问题算法观测序列生成算法概率计算算法前向概率与后向概率前向算法后向算法小结概率与期望学习问题监督学习方法Baum-Welch算法预测算法近似算法(MAP)维特比算法(Viterbi)简介动态贝叶斯网络的最简单实现隐马尔可夫模型。HMM可以看成是一种推广的混合模型。序列化建模,打破了数据独立同分布的假设。有些关系需要理清
- Algorithm Review 9 数学相关
Log_x
学习笔记概率论算法
概率与期望结论1设xxx为离散随机变量,且x∈Nx\in\mathbbNx∈N,则E(x)=∑i=1∞i⋅P(x=i)=∑i=1∞P(x≥i)E(x)=\sum\limits_{i=1}^{\infty}i·P(x=i)=\sum\limits_{i=1}^{\infty}P(x\gei)E(x)=i=1∑∞i⋅P(x=i)=i=1∑∞P(x≥i)。树上随机游走给定一棵树,从树中的某点xxx出发,
- SPSS卡方检验结果解读详解
nekonekoboom
SPSS
卡方检验(Chi-SquareTest)是由Pearson提出的一种统计方法,在一定的置信水平和自由度下,通过比较卡方统计量和卡方分布函数概率值,判断实际概率与期望概率是否吻合,通过比较理论概率和实际概率的吻合程度,可检验两个分类变量的相关性。用户可利用SPSS软件方便的完成卡方检验,在SPSS软件中,默认H0成立,即观察频数和实际频数无差别,即两组变量相互不产生影响,两组变量不相关,如果检验P值
- 算法学习笔记:概率/期望 DP
Plozia
动态规划学习笔记+专项训练算法动态规划数据结构
算法学习笔记:概率/期望DP1.前言2.例题3.练习题1.前言概率/期望DP,是一种DP,用来计算概率或者是期望。其实我认为这种DP就是计算期望的,毕竟概率可以看成代价为1的期望。没有学过期望的读者可以看看这篇文章:算法学习笔记:概率与期望而概率/期望DP,最关键的就是期望方程。下面看一道例题。2.例题CF1265EBeautifulMirrors以这题为例,详细讲解期望DP的一般套路。为了方便,
- 隐马尔可夫模型 (hidden Markov model, HMM)
连理o
机器学习概率论自然语言处理机器学习
本文为《统计学习方法》的读书笔记目录隐马尔可夫模型的基本概念隐马尔可夫模型的定义观测序列的生成过程隐马尔可夫模型的3个基本问题概率计算算法直接计算法前向算法(forwardalgorithm)后向算法(backwardalgorithm)一些概率与期望值的计算学习算法监督学习方法Baum-Welch算法(无监督学习方法)预测算法近似算法维特比算法(Viterbialgorithm)隐马尔可夫模型的
- 机器学习算法(十七):隐马尔科夫模型(HMM)
意念回复
机器学习机器学习算法机器学习
目录1隐马尔科夫模型1.1模型概念1.2定义1.3隐马尔科夫模型的两个性质1.4盒子与球模型1.5三个基本问题2概率计算算法2.1直接计算法2.2前向算法2.3后向算法2.4一些概率与期望值的计算3学习算法3.1监督学习方法3.2Baum-Welch算法3.3Baum-Welch模型参数估计公式4预测算法4.1近似算法4.2维比特算法5总结马尔科夫链:机器学习算法(十六):马尔科夫链_意念回复的博
- 机器学习面试题——朴素贝叶斯
冰露可乐
机器学习深度学习朴素贝叶斯贝叶斯公式大厂笔试面试题
机器学习面试题——朴素贝叶斯提示:这些知识点也是大厂笔试经常考的题目,我记得阿里和京东就考!!!想必在互联网大厂就会用这些知识解决实际问题朴素贝叶斯介绍一下朴素贝叶斯优缺点贝叶斯公式朴素贝叶斯中的“朴素”怎么理解?什么是拉普拉斯平滑法?朴素贝叶斯中有没有超参数可以调?你知道朴素贝叶斯有哪些应用吗?朴素贝叶斯对异常值敏不敏感?频率学派与贝叶斯学派的差别概率与期望的公式先验概率与后验概率文章目录机器学
- [NOI2005] 聪聪与可可
Sito_Ask
NOI2005聪聪与可可~~机器猫の传送门~~期望DP+记搜聪聪一直在向可可方向追,所以不会回到原处,不具有后效性,考虑用概率与期望DP+记忆化搜索求解用dp[x][y]表示可可在x点,聪聪在y点时步数的期望值判断边界①当x==y时结束(此时毫无疑问的,dp[x][y]=0)②当
- 2019暑期计划 / 每日刷题记录
weixin_30951743
计划##1.复习与提高###动态规划-数位DP-树形DP###图论-Tarjan-拓扑序的应用-树链剖分-点分治-树上距离-网络流/费用流###数据结构-平衡树-主席树-ST表###数论-整数研究-组合数学-概率与期望##2.新知学习###离线算法-CDQ分治-整体二分###数据结构-线段树扩展操作-树套树-LCT###图论-基环树每日刷题记录转载于:https://www.cnblogs.com
- 一文读懂NLP之隐马尔科夫模型(HMM)详解加python实现
Elenstone
NLP算法详解机器学习算法nlp
一文读懂NLP之隐马尔科夫模型(HMM)详解加python实现1隐马尔科夫模型1.1HMM解决的问题1.2HMM模型的定义1.2.1HMM的两个假设1.2.2HMM模型1.3HMM模型的三个基本问题2概率计算问题及算法2.1直接计算法2.2前向算法2.3后向算法2.4一些概率与期望值的计算3模型训练问题及算法3.1监督学习——最大似然估计3.2非监督学习——EM算法3.3Baum-Welch算法4
- 真正的决策都是不确定性决策
蓝色多莉
阅读笔记第126/365天今日阅读《升维——不确定时代的决策博弈》作者:【澳】王珞第3章:真正的决策都是不确定性决策一、企业利润来源于不确定性。1、什么是不确定性?风险是能被计算概率与期望值的是基于已经发生的事件的统计,而不确定性是无法被预见的,即使能被预见,其发生的概率也不能被计算的未来事件。不确定性事件是不可预见,没有概率的,包括灾难、命运、前景等一切未来可能发生的事件,是每个个体未来都要共同
- 解题报告(十七)概率与期望(概率论)(ACM / OI)
繁凡さん
【解题报告】-超高质量题单+题解概率与期望《概率论》
繁凡出品的全新系列:解题报告系列——超高质量算法题单,配套我写的超高质量题解和代码,题目难度不一定按照题号排序,我会在每道题后面加上题目难度指数(1∼51\sim51∼5),以模板题难度111为基准。这样大家在学习算法的时候就可以执行这样的流程:%阅读我的【学习笔记】/【算法全家桶】学习算法⇒\Rightarrow⇒阅读我的相应算法的【解题报告】获得高质量题单⇒\Rightarrow⇒根据我的一句
- 概率与期望习题总结
总结概率题一般正着推期望题一般倒着推图上的问题如果是\(DAG\)可以直接转移否则可能要用到高斯消元\(20\)的数据范围大概率是装压有些看似无限循环的式子其实可以倒着递推1、骰子基础版题目描述众所周知,骰子是一个六面分别刻有一到六点的立方体,每次投掷骰子,从理论上讲得到一点到六点的概率都是\(1/6\)。今有骰子一颗,连续投掷\(N\)次,问点数总和大于等于\(X\)的概率是多少?输入仅有一行包
- HDU 4254 A Famous Game(概率与期望)
clover_hxy
组合数学概率与期望
题目描述传送门题目大意:一个口袋里有n个红色或蓝色的球。n+1种颜色分布情况(i个红球n−i个蓝球)的概率是相等的。B从口袋中不放回地摸出了p个球,其中有q个是红色的。求B再摸一个球时,摸出的球是红色的概率。题解设Nk表示n个球中有k个红球的概率。A表示p个球中有q个红球B表示下次摸出的是红球那么P(Nk)=1n+1P(A)=C(k,q)C(n−k,p−q)C(n,p)P(B|ANk)=k−qn−
- HDU 5753 Permutation Bo (概率与期望)
等我学会后缀自动机
HDU习题集规律/递推概率论/博弈论
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5753#includeusingnamespacestd;#definedebugputs("YES");#definerep(x,y,z)for(int(x)=(y);(x)#definemk(x,y)make_pair(x,y)#definefifirst#definesesecondconstin
- 【总结】概率与期望
616156
总结数论DP高斯消元数学概率与期望
前言作为NOIP级的知识点,概率与期望算是比较困难的类型了。但其实也不是无法解决的难题。本文主要通过作者本人的刷题经历,对概率期望类题目进行总结。概率51Nod1639绑鞋带:有n根鞋带混在一起,每根鞋带有两个鞋带头。现在重复n次以下操作:随机抽出两个鞋带头,把它们绑在一起。求最终只形成一个环的概率?依次考虑每一步操作,现在已经选出来了一个头,它必须和非它所在的链的另一个头绑在一起,才能得到合法方
- 概率与期望详解!一次精通oi中的概率期望
Tyl18858230607
目录基础概念最大值不超过Y的期望概率为P时期望成功次数基础问题拿球随机游走经典问题期望线性性练习题例题选讲noip2016换教室区间交0-1边树求直径期望球染色区间翻转二位&三维凸包点数期望单选错位KILL后记@(期望与概率)基础概念随机变量:有多种可能的取值的变量万物都可以当做随机变量,包括常数,方便用\(\sum\)统计P(A):事件A发⽣的概率E(X):随机变量X的期望值,\(E(X)=Su
- 隐马尔可夫模型
tt12121221
隐马尔可夫模型隐马尔科夫模型的基本概念概率计算算法直接计算法前向算法后向算法一些概率与期望的计算学习算法Baum-Welch算法预测算法近似算法维特比算法是用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成的观测序列的过程,属于生成模型。马尔科夫模型中主要讨论三个问题:即概率计算算法、学习算法以及预测算法。隐马尔科夫模型的基本概念隐马尔科夫模型由初始概率分布、状态转移概率分布以及观测概率分
- 概率期望中高斯消元的几种用法
IDnumber4
数论题解总结
前置知识:高斯消元法博主理解浅显,只能膜piao别人的总结戳别人家的题解咳咳……还是简单介绍两句它可以用O(n3)O(n^3)O(n3)的复杂度解出n元方程组表示方法:矩阵tips:一般情况下高斯消元可能出现无解、无穷解的情况,我的做法里面没有判断,由于矩阵对角线上不会出现0。概率与期望:概率:发生的可能性期望:概率的加权平均数(表示对权值的一个预期值)eg.某图中从起点经过i步到达终点的可能性为
- codeforces 335E. Counting Skyscrapers (概率与期望)
clover_hxy
概率与期望
题目描述传送门中文题意题解先从简单的的入手吧。(1)由BOb推Alice我们需要证明的就是如果得分是2^i,那么经过的楼数也是2^i(这里经过的楼数指的是中间经过的数量+右端点)我们假设左端点一定可以连高度是i+1,编号是i的溜索,那么他的概率就是1.对于中间经过的溜索我们要求他们的高度是[1..i]之间的任意数,右端点的高度是[i+1…inf]那么中间经过的数量实际也是正无穷项。先考虑高度是[1
- 【专题】概率和期望
weixin_33923762
【参考】浅析竞赛中一类数学期望问题的解决方法信息学竞赛中概率问题求解初探WC2018冬令营课件《概率与期望及其应用》曹文【概率的定义】基本事件是一次实验可能出现的不可再分解的直接结果,样本空间Ω是全体基本事件的集合,随机事件是若干基本事件组成的集合。事件的并:事件C=”事件A与事件B至少有一个发生“,则C=A∪B。事件的交:同时发生,A∩B。一个随机事件的概率可以认为是事件占样本空间的比例(不严格
- 洛谷P1654 OSU!_概率与期望
EM-LGH
Code:#include#includeusingnamespacestd;constintmaxn=1000000+4;doublef[maxn],g[maxn],h[maxn];intmain(){intn;scanf("%d",&n);for(inti=1;i<=n;++i){doubleperc;scanf("%lf",&perc);h[i]=(h[i-1]+1)*perc;g[i]=(
- LuoguP1654 OSU! 概率与期望
EM-LGH
感觉数学期望这里始终都没太学明白.期望在任何时候都具有线性性,即$E(a+b)=E(a)+E(b)$,这个式子任何时候都成立.先考虑求$x$,$x^2$.令$x1[i]$表示$i$为$1$向前的极长$1$的期望长度,$x2[i],x3[i]$为$x^2,x^3$的期望.那么考虑从$i-1$那里转移过来,就是$E(j+1)=E(j)+E(1)=E(j)+1$.概率是$q[i]$,所以$x1[i]=(
- 老年(已退役)选手复习计划 PART2
CR1SceNT
放上来有些符号产生了一点偏差。。不知道怎么变成了问号。。比较懒懒得改了。。意会,意会。。2017.7.4:概率与期望:1.BZOJ1415:预处理p[x][y]表示,猫在x,鼠在y时猫下一步走哪里。然后记忆化搜索。2.BZOJ3450:再求一个期望长度就好解决了。斜率优化:1.BZOJ1010:推式子。2.BZOJ1096:同上。3.BZOJ3156:同上。4.BZOJ3437:同上。5.BZOJ
- [学习笔记]高斯消元求解两种特殊问题(带状矩阵/主元法)
C20190406Panda_hu
#OI知识点合辑
本文章是[学习笔记]概率与期望进阶的一部分由于时间问题我写的比较简略,所以我把大佬的总结链接贴上来了(应该没什么吧qwq)。1概述最常见的当然是随机游走问题了…•fu=∑pu,v∗(fv+wu,v)f_u=\sump_{u,v}*(f_{v}+w_{u,v})fu=∑pu,v∗(fv+wu,v)•计算期望在这个节点上,停留多少步:fu=∑pv,u∗fv+[u=S]f_u=\sump_{v,u}*f
- 【概率与期望】【暴力搜索】[Codeforces#621]题解+总结
weixin_30340775
WetSharkandOddandEven题目描述Today,WetSharkisgivennintegers.Usinganyoftheseintegersnomorethanonce,WetSharkwantstogetmaximumpossibleeven(divisibleby2)sum.Please,calculatethisvalueforWetShark.Note,thatifWet
- [CodeForces891E]Lust-生成函数-概率与期望
zlttttt
生成函数【GenerationFunction】Theory】
LustAfalsewitnessthatspeakethlies!Youaregivenasequencecontainingnintegers.Thereisavariableresthatisequalto0initially.Thefollowingprocessrepeatsktimes.Chooseanindexfrom1tonuniformlyatrandom.Nameitx.Add
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在