- AI大模型副业变现之路,有技术就有收入!
AI大模型-王哥
人工智能AI大模型大模型大模型学习大模型教程大模型入门
在当今时代,AI大模型的应用越来越广泛,利用这些技术开展副业赚钱已成为可能。以下是一份详细的指南,帮助你了解需要学习的内容以及如何操作。一、需要学习的内容基础知识储备(1)数学知识:线性代数、概率论与数理统计、微积分等,这些是理解AI算法的基础。(2)编程技能:掌握Python编程语言,因为Python在AI领域有丰富的库和框架支持。(3)机器学习原理:了解常见的机器学习算法,如线性回归、决策树、
- 2019-03-20记录及学习计划更正
逆风飞翔的鸟
今天早晨早早的就坐上了返回学校的高铁,自己复习的进度稍慢了一些,不过没关系,这几天再追回来,最近发现虽然自己数学的做题能力有所提升,但是熟练程度还差很多,所以接下来高等数学要多做题,线性代数基础已经复习完毕,不能丢下,每天要做一定量的练习来保持住自己的水平。概率论与数理统计自己感觉有些困难,需要从课本开始认真的复习。关于英语我已经用百词斩背了有400左右的单词了,但是不是很扎实,所以自己要提升自己
- 【个人学习笔记】概率论与数理统计知识梳理【五】
已经是全速前进了
概率论
文章目录第五章、大数定律及中心极限定理一、大数定律1.1基本概念1.2弱大数定理二、中心极限定理独立同分布的中心极限定理定理总结第五章、大数定律及中心极限定理写博客比想象中费劲得多,公式得敲好久,所以只得随缘更更了,想写一些机器学习相关的东西,但是强迫症又不允许我把这个扔掉不管,我太难了Orz这一节的内容比较深,即使我是一个喜欢数学的工科生,也没有精力再去深究了,各式各样的大数定律及中心极限定理我
- 概率论与数理统计实验 附源码及实验报告 可打包为exe
货又星
概率论经验分享笔记python开源
Hi,I’m@货又星I’minterestedin…I’mcurrentlylearning…I’mlookingtocollaborateon…Howtoreachme…README目录(持续更新中)各种错误处理、爬虫实战及模板、百度智能云人脸识别、计算机视觉深度学习CNN图像识别与分类、PaddlePaddle自然语言处理知识图谱、GitHub、运维…WeChat:1297767084GitH
- 概率论与数理统计——二、随机变量及其分布
米妮爱分享
1随机变量随机变量是把样本S映射到R(实值单值)函数随机变量的引入可以来描述各种随机现象,并能利用数学分析的方法对随机实验的结果进行深入广泛的研究和讨论。2离散随机变量及其分布律(一)(0-1)分布(二)伯努力试验、二项分布(三)泊松分布3随机变量的分布函数计算分布函数时,根据其分布律,计算某一范围的概率时,左边x是小于不等于x的,当等于时,拆开的等式在3.1中还需要加上等于此值的概率,见例子。4
- 如何快速入门深度学习
人生万事须自为,跬步江山即寥廓。
机器学习人工智能chatgpt
深度学习是人工智能领域的一个重要分支,它模拟人脑的神经网络结构,通过大量的数据训练模型,使计算机能够自动学习和理解数据。深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。如果你想快速入门深度学习,可以按照以下步骤进行:1.学习基础知识在学习深度学习之前,你需要具备一定的数学基础,包括线性代数、概率论与数理统计、微积分等。此外,你还需要掌握一门编程语言,如Python,因为大多数深度
- 概率论与数理统计 第八章 假设检验
Jarkata
课前导读统计推断的另一类重要问题是假设检验问题。参数估计的主要任务是找参数值等于多少,或在哪个范围内取值。而假设检验则主要是看参数的值是否等于某个特定的值。通常进行假设检验即选定一个假设,确定用以决策的拒绝域的形式,构造一个检验统计量,求出拒绝域或检验统计量的p值,查看结果是否落在拒绝域内或p值是否小于显著性水平,做出决策的一个过程。第一节检验的基本原理举个例子,体现假设检验的思想:假设检验的统计
- 考研计划 东南大学
风与易水
考研学习
考研计划2021考研自用,目前已经上岸东南大学,祝各位顺利!数一:高数、线代、概率论与数理统计使用参考资料:1.《同济高数、浙大概率论与数理统计》2.《李永乐基础强化系列材料》3.武忠祥教学视频4.李林8805.武老师的高数辅导讲义+李永乐线代讲义5.李林的1086.《李林冲刺6套卷,李林预测4套卷》复习策略:1.2月初~6月底第一轮打基础,以武忠祥2020视频【教材(查阅相关知识点)】为主,深刻
- 武忠祥2025高等数学,基础阶段的百度网盘+视频及PDF
m0_54050778
pdf概率论
考研数学武忠祥基础主要学习以下几个方面的内容:1.微积分:主要包括极限、连续、导数、积分等概念,以及它们的基本性质和运算方法。2.线性代数:主要包括向量、向量空间、线性方程组、矩阵、行列式、特征值和特征向量等概念,以及它们的基本性质和运算方法。3概率论与数理统计:主要包括随机事件和概率、条件概率、独立性、随机变量及其分布、数学期望方差和协方差、大数定律和中心极限定理等概念以及它们的基本性质和运算方
- 大二下 课程安排
三冬四夏会不会有点漫长
#大二下计划
专业选修web前端开发信息与网络安全必修数据库原理4概率论与数理统计4软件设计与体系结构3编译技术3软件设计实践2大学体育1选修(待更新)目标大二下一定要好好学习,不然最后总的排名真的就垫底了,大一上绩点专业排名33/139,大一下绩点专业排名91/139,大二上待更新,整个大一绩点专业排名71/139,希望大二下能尽自己的全力学,绩点考到尽可能高,把自己不太行的过往的成绩往上拉一拉
- 不知道几天能学完《概率论与数理统计》之1.1随机统计
不安全的安保
不知道几天能学完概率论概率论
引言确定性(必然):一定发生/一定不发生随机性(偶然):可能发生/不发生统计规律:对事情做出大量重复性的实验试图找出某种规律1.1.1随机事件与随机试验试验:为了找出实践规律,对客观事物进行观察、测量,然后进行科学实验等等这类统称为试验随机试验:使用E表示三个要求相同条件下可以重复实验结果不止一个无法预测哪个结果会出现举个例子:抛硬币随机抛硬币可以出现两次正面硬币有正面和反面在硬币落地之前无法得知
- 2024年高校建设大数据实验室建设的意义
泰迪智能科技
大数据实验室大数据
数据挖掘与大数据分析是以计算机基础为基础,以挖掘算法为核心,紧密面向行业应用的一门综合性学科。其主要技术涉及概率论与数理统计、数据挖掘、算法与数据结构、计算机网络、并行计算等多个专业方向,因此该学科对于实验室具有较高的专业要求。实验室不仅要提供基础的开发环境,还要提供大数据的运算环境以及用于实验的实战大数据案例。这些实验素材的准备均需专业的大数据实验室作为支撑。目前,在我国高校的专业设置上与数据挖
- 概率论与数理统计————3.随机变量及其分布
辣个骑士
概率论与数理统计概率论
一、随机变量设E是一个随机试验,S为样本空间,样本空间的任意样本点e可以通过特定的对应法则X,使得每个样本点都有与之对应的数对应,则称X=X(e)为随机变量二、分布函数分布函数:设X为随机变量,x是任意实数,则事件{Xx}为随机变量X的分布函数,记为F(x)即:F(x)=P(Xx)(1)几何意义:(2)某点处的概率:P(a)=P(Xa)-P(X0;F(x)=cx0三、离散型随机变量及其分布离散型随
- 概率论与数理统计————古典概型、几何概型和条件概率
辣个骑士
概率论与数理统计概率论
一、古典概型特点(1)有限性:试验S的样本空间的有限集合(2)等可能性:每个样本点发生的概率是相等的公式:P(A)=A为随机事件的样本点数;S是样本空间二、几何概型计算公式:p(A)=A的长度、面积或体积S的长度、面积或体积三、条件概率条件概率:设A、B为两个事件,且p(B)>0,则在事件B条件下事件A发生的概率为P(A|B)=p(|A)=1-P(B|A)乘法公式:事件的独立性:若事件A、B满足P
- 概率论与数理统计————1.随机事件与概率
辣个骑士
概率论与数理统计概率论
一、随机事件随机试验:满足三个特点(1)可重复性:可在相同的条件下重复进行(2)可预知性:每次试验的可能不止一个,事先知道试验的所有可能结果(3)不确定性:每次试验不能确定实验结果随机试验记作E样本空间:随机试验E的所有可能的结果构成的集合样本点:样本空间的每个元素是一个样本点随机事件:样本空间的子集为一个随机事件(事件放生:该事件的某个样本点出现)必然事件:必然发生的事件不可能事件:不可能发生的
- 不动点迭代c语言for循环,概率论与数理统计-西北师范大学数学与统计学院.PDF
Jezzy WANG
不动点迭代c语言for循环
概率论与数理统计-西北师范大学数学与统计学院数学与统计学院数学与应用数学专业云亭班专业平台必修课程教学大纲数学与统计学院数学与应用数学专业云亭班专业平台必修课程包括以下11门课程:概率论与数理统计、实变函数、泛函分析、拓扑学、微分几何、C语言、近世代数、运筹学、常微分方程、复变函数、大学物理。概率论与数理统计一、说明课程性质:该课程是数学与应用数学专业云亭班专业平台必修课程之一,第5学期开设。周4
- 概率论与数理统计-第7章 假设检验
Ciian
概率论与数理统计概率论
假设检验的基本概念二、假设检验的基本思想假设检验的基本思想实质上是带有某种概率性质的反证法,为了检验一个假设H0,是否正确,首先假定该假设H0正确,然后根据抽取到的样本对假设H0作出接受或拒绝的决策,如果样本观察值导致了不合理的现象发生,就应拒绝假设H0,否则应接受假设H0·三、假设检验的两类错误第一类错误当假设H0正确时,小概率事件也有可能发生,此时,我们会拒绝假设H0,因而犯了“弃真”的错误,
- 概率论与数理统计系列笔记之第六章——参数估计
欧阳妙妙
概率论
概率论与数理统计笔记(第六章——参数估计)对于统计专业来说,书本知识总有遗忘,翻看教材又太麻烦,于是打算记下笔记与自己的一些思考,主要参考用书是茆诗松老师编写的《概率论与数理统计教程》,其他知识待后续书籍补充。文章目录概率论与数理统计笔记(第六章——参数估计)6.1点估计的概念以及无偏性6.1.1点估计及无偏性6.1.2有效性6.2矩估计以及相合性6.2.1替换原理和矩法估计6.2.2概率函数已知
- 【概率论与数理统计】第二章知识点复习与习题
小萨摩!
期末考试概率论
思维导图笔记一、随机变量定义:设随机试验的样本空间为S={e},X=X(e)是定义在样本空间S上的实值单值函数。称X=X(e)为随机变量。类似于函数、映射的概念。既然类似于函数,就有定义域和至于,通过定义知道,定义域为样本空间,值域为实数集。即对随机事件数量化。二、离散型随机变量及其分布律1离散型随机变量定义:全部可能取到的值是有限个或可列无限多个的随机变量。这里有限一定可列,可列不一定有限。而分
- 张宇1000题概率论与数理统计 第九章 参数估计与假设检验
古月忻
#概率论张宇考研其他
目录AAA组6.设x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn是来自总体X∼N(μ,σ2)X\simN(\mu,\sigma^2)X∼N(μ,σ2)(μ,σ2\mu,\sigma^2μ,σ2都未知)的简单随机样本的观测值,则σ2\sigma^2σ2的最大似然估计值为( )。(A)1n∑i=1n(xi−μ)2;(A)\cfrac{1}{n}\displaystyl
- 概率论与数理统计 Chapter4. 参数估计
Espresso Macchiato
基础数学概率论参数估计极大似然估计矩估计区间估计
概率论与数理统计Chapter4.参数估计1.基础概念1.总体2.样品3.统计量1.样本方差2.k阶原点矩3.k阶中心矩2.参数的点估计1.矩估计1.正态分布2.指数分布3.均匀分布4.二项分布5.泊松分布2.极大似然估计1.正态分布2.指数分布3.二项分布4.均匀分布5.泊松分布3.贝叶斯估计3.点估计的优良性准则1.无偏性1.均值2.方差3.标准差2.最小方差无偏估计3.相合性4.区间估计1.
- 概率论与数理统计浙大第五版 第七章 部分习题+R代码
⑨充满智慧与力量⑨
概率论
习题七1、μ1=E(X)=μ=1n∑i=1nxi=18(74.001+74.005+74.003+74.001+74.000+73.998+74.006+74.002)=74.002\mu_1=E(X)=\mu\\=\frac{1}{n}\sum_{i=1}^nx_i\\=\frac{1}{8}(74.001+74.005+74.003+74.001+74.000+73.998+74.006+74
- 概率论与数理统计-第6章 参数估计
Ciian
概率论与数理统计概率论
6.1点估计问题概述一、点估计的概念二、评价估计量的标准无偏性定义1:设^θ(X1,…,Xn)是未知参数θ的估计量,若E(^θ)=θ,则称^θ为θ的无偏估计量定理1:设X1,…,Xn,为取自总体X的样本,总体X的均值为μ,方差为σ2,则(I)样本均值¯X是μ的无偏估计量;(2)样本方差S2是σ2的无偏估计量;&1有效性无偏性是有效性的前提。定义2:例题:*1相合性(一致性)我们不仅希望一个估计量是
- 最小描述长度MDL(Minimum Description Length)及信息论介绍
Avasla
机器学习算法概率论
信息论介绍信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化。它最初被发明是用来研究在一个含有噪声的信道上用离散的字母表来发送消息,例如通过无线电传输来通信。在这种情况下,信息论告诉我们如何对消息设计最有编码以及计算消息的期望长度,这些消息是使用多种不同编码机制、从特斯能够的概率分布上采样得到的。百度百科的解释是:信息论是运用概率论与数理统计的方法研究信息、信息熵、通信系统、
- 概率论与数理统计(期末复习)
蓝桉802
概率论
第四章数学期望与方差1.期望的性质:E(C)=C;E(X+C)=E(X)+C;E(CX)=CE(X);E(kX+C)=kE(X)+C;E(X+Y)=E(X)+E(Y);E(X-Y)=E(X-Y);;X与Y独立:E(XY)=E(X)E(Y);2.方差的性质:D(X)=E(X^2)-[E(X)]^2D(C)=0;D(X+C)=D(X);D(CX)=C^2D(X);D(kX+C)=k^2D(X);X与Y
- 概率论与数理统计 知识点+课后习题
兑生
大学课程概率论
文章目录[学习资源整合](https://www.cnblogs.com/duisheng/p/17872980.html)总复习知识点⭐常用分布的数学期望和方差选择题填空题大题1.概率2.概率3.概率4.P5.概率6.概率密度函数F(X)F(X)F(X)7.分布列求方差V(X)V(X)V(X)8.求分布函数F(X)F(X)F(X)9.求F(X)F(X)F(X)和P(X)P(X)P(X)10.求未
- AI技术体系和领域浅总结
TisUs
数学基础微积分《高等数学》线性代数《线性代数》概率统计《概率论与数理统计》信息论《信息论基础》(机械工业出版社)集合论和图论《离散数学》博弈论《博弈论》(中国人民大学出版社)张量分析现代几何计算机基础计算机原理程序设计语言操作系统分布式系统算法基础机器学习算法机器学习基础(估计方法特征工程)线性模型(线性回归)逻辑回归决策树模型(GBDT)支持向量机贝叶斯分类器神经网络(深度学习):MLPCNNR
- 概率论与数理统计基础知识
竹叶青lvye
程序员的数学概率论
计算机视觉一些算法中常会用到概论的一些知识,为了便于理解和快速回忆,博主这边对常用的一些知识点做下整理,主要来源于如下这本书籍。1.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。2.事件的概率是衡量该事件发生的可能性的量度。概率论(数学分支)_百度百科概率(统计学术语)_百度百科3.随机事件,是指的一个事
- 二月
goldfish2017
2018年已经过完一个月了,一月份完成了公司搬办公室,开年会中了个末等奖,修车的钱给保险公司也都给报销了,部门公司也彻底成为全资子公司,原来老板特意把年终奖提前给发了,手头能多少宽裕点了。如果考试成绩不理想,还是年后想办法谋求再回北京找工作,如果成绩还可以,就需要准备加试复试。一月份完成了概率论与数理统计的通读,看了两三遍课本和视频才大概了解,编译原理在年前完成通读教材一遍。减少同时关注事情的数量
- 极大似然估计定义及例题
脑子不好真君
数学概率论与数理统计极大似然估计
一、极大似然估计定义实际上就是说,我们在总体中抽取样本,我们希望在样本中发生的情况最大化,用在样本中发生的情况去估计总体中发生情况。二、例题注意:对分布函数求导得概率密度函数三、参考书目茆诗松,周纪芗等.概率论与数理统计(第三版).中国统计出版社,2007王松桂等.概率论与数理统计(第三版).科学出版社,2011同济大学数学系.概率论与数理统计.人民邮电出版社,2017
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe