- 最小生成树个数
兔猪猪兔
矩阵算法矩阵树最小生成树计数
今天练习最小生成树时做到这样一个题1150.最小生成树计数-AcWing题库一个很裸的求最小生成树个数的题,搜题解发现矩阵树来求解很好,关于图论的结论一般证明都非常麻烦,而且我觉得会用就好,这里附上大佬的证明,矩阵树定理及其无向图形式证明--洛谷博客,我们只取其中的结论部分首先,定义一些东西对于无向图,定义D(G)为图G的度数矩阵,其中:(deg是度数的意思)定义A(G)为图G的邻接矩阵,其中:t
- AtCoder Beginner Contest 336 G. 16 Integers(图计数 欧拉路径转欧拉回路 矩阵树定理 best定理)
Code92007
知识点总结#图计数#欧拉回路/欧拉路径图计数欧拉路径欧拉回路best定理
题目给16个非负整数,x[i∈(0,1)][j∈(0,1)][k∈(0,1)][l∈(0,1)]求长为n+3的01串的方案数,满足长度为4的ijkl(2*2*2*2,16种情况)串恰为x[i][j][k][l]个答案对998244353取模思路来源https://www.cnblogs.com/tzcwk/p/matrix-tree-best-theroem.html矩阵树定理-OIWiki知识点
- 【学习笔记】[ABC323G] Inversion of Tree
仰望星空的蚂蚁
线性代数学习笔记
前置知识:矩阵树定理,特征多项式省流:板子缝合题。可以复习一下线性代数的基本知识。定义Pu>PvP_u>P_vPu>Pv的边价值为xxx,Pun>n>n就寄了。因为都是板子,所以建议多看一下代码。注意行和列都要进行操作。复杂度O(n3)O(n^3)O(n3)。#include#definelllonglong#definepbpush_back#definefifirst#defineseseco
- 矩阵树定理
_fairyland
图论算法
构造一个拉普拉斯矩阵:对于边(u,v)(u,v)(u,v),矩阵a[u][u]a[u][u]a[u][u]++,a[v][v]a[v][v]a[v][v]++,a[u][v]a[u][v]a[u][v]–,a[v][u]a[v][u]a[v][u]–,去掉最后一行最后一列,求行列式(取模用辗转相除),即图的生成树个数矩阵树求的是:∑T∏e∈Tpe\sum_T\prod_{e\inT}p_e∑T∏e
- 矩阵树定理||高斯消元求行列式
Yjmstr
学习笔记矩阵树定理
参考链接-博客园参考链接-oiwiki定理部分并没有什么原创内容,全是阅读上面两篇文章做的笔记。矩阵树定理KirchhoffKirchhoffKirchhoff矩阵树定理(简称矩阵树定理)解决了一张图的生成树个数计数问题。矩阵树定理有很多形式,以下内容是一些声明。应用矩阵树定理的图允许重边,但是不允许自环。以下内容是照抄oiwiki的无向图情况:设GGG是一个有nnn个顶点的无向图。定义度数矩阵D
- 矩阵树定理复习与简要证明
EasternCountry
基础算法算法
矩阵树定理用处计算无向图的生成树个数。命题&简要证明矩阵树定理:给定一个有n个点的图G的邻接矩阵A和度数矩阵B(就是B[i][i]B[i][i]B[i][i]表示i这个点的出度,其他位置均为0),记S为G的生成树个数。设T为B-A,记T划去第k行和第k列的矩阵为P(1y,则意味着一定不会有p[y]=y,所以y也一定会有一条出边,最终一定会形成一个环。有环非简单环就意味着有一个点至少有两个出边,这个
- NOI2021信息竞赛学习笔记
andyc_03
线性代数图论算法
一.图论1.仙人掌问题(圆方树)2.矩阵树定理3.网络流4.基环树二、数据结构1.线段树2.左偏树3.树链剖分4.主席树5.树套树6.长链剖分7.LCT三、数学1.欧拉函数|(扩展)欧拉定理|欧拉反演2.线性筛3.莫比乌斯反演4.FFT&NTT5.生成函数6.多项式全家桶7.单位根反演8.FWT9.拉格朗日插值10.线性基11.burnside&polya四、字符串1.后缀数组2.后缀自动机3.序
- 【模拟赛】星际联邦 federation (矩阵树定理,线性代数,循环行列式)
DD(XYX)
数学图论C++算法线性代数矩阵树定理行列式
题面题解如果我们把这个www定义为某一种距离的follow可连的边数,那么就很清楚了:对于所有1≤i,j≤n1\leqi,j\leqn1≤i,j≤n,iii向jjj连有wi−j+nmod nw_{i-j+n\modn}wi−j+nmodn条有向边,而每个点向0号点连有1条有向边。求以0为根的内向生成树个数。直接上矩阵树定理,由于最终求余子式,干脆就忽略0号点,那么答案就是det[1+∑w−w1
- 生成树计数 --- Matrix-Tree定理(基尔霍夫矩阵树定理)
Anxdada
定理证明请点这,多看几遍就懂了模板题点这题目大意:*一个有n座城市的组成国家,城市1至n编号,其中一些城市之间可以修建高速公路;*需要有选择的修建一些高速公路,从而组成一个交通网络;*计算有多少种方案,使得任意两座城市之间恰好只有一条路径;模板:#include#include#include#include#include#definelllonglongusingnamespacestd;co
- 【bzoj4031】 HEOI2015小Z的房间 矩阵树定理
qingdaobaibai
线性代数图论
第一次做矩阵树定理的题,其实就是记了个结论也没太看证明,然后学了学怎么用高斯消元求行列式,整数消元还真别扭,要用辗转相除,然后要注意取模的问题,一开始以为hzwer写麻烦了,后来想了想不加外面那句话会有问题,因为取模了。#include#include#include#include#include#include#definemod1000000000usingnamespacestd;intd
- [矩阵树定理][HEOI2015]小Z的房间
romiqi_new
矩阵树定理
传送门矩阵树定理:一张图的基尔霍夫矩阵即为其度数矩阵-邻接矩阵,度数矩阵中D[i][i]D[i][i]D[i][i]为点i的度一张图的生成树个数即为其基尔霍夫矩阵的行列式Code:#include#defineintlonglong#defineN90#definemod1000000000usingnamespacestd;intn,m,f[N][N];inttot,Map[N][N];void
- bzoj4031: [HEOI2015]小Z的房间
OI界第一麻瓜
矩阵树定理
题目大意就是生成树计数问题题解矩阵树定理题表和定理大意CODE:#include#include#include#includeusingnamespacestd;typedeflonglongLL;constLLMOD=1e9;constLLN=105;LLn,m;LLidx[N][N],id=0;charss[N][N];LLd[N][N],a[N][N];LLc[N][N];//度数是否有边
- [BZOJ4031][HEOI2015]小Z的房间(矩阵树定理+高斯消元)
FromATP
BZOJ高斯消元消来消去
======这里放传送门======题解没错这就是个裸题矩阵树定理:定义一个图的基尔霍夫矩阵为:A[i][j]=⎧⎩⎨d[i],−1,i=ji≠j其中d[i]表示点i的度。对于无向图来说,这个矩阵的任何一个n-1阶主子式的行列式的值就是这个图的不同生成树个数。其中n-1阶主子式表示在矩阵中任意去掉标号相同的一行和一列以后剩下的子矩阵但是这题模数实在是太!恶!心!了!!!ATP尝试了N多种方法包括什
- BZOJ4031 [HEOI2015]小Z的房间
dogeding
矩阵树懵逼了半天终于AC
传送门题解:因为持续写题感到恶心又不想显得太颓于是随便存几个板子求生成树方案数?矩阵树定理板子题。这就当我存个板子的地方吧。总之就是对于边(i,j),矩阵a[i][j]值-1,a[i][i]值+1。然后求个行列式即可。代码:#include#include#definemaxn105#definemod1000000000usingnamespacestd;intn,m,d[5]={0,1,0,-
- CF917D Stranger Trees
hanyuweining
题解————线性代数————拉格朗日插值矩阵树定理
传送门非常舒适的一道题趁机学了一发拉格朗日插值2333貌似是WC2018讲的题我们对于在原图中存在的边记为x没出现的边记为1然后矩阵树定理求出行列式对应的x^k的系数就是跟原图有k条重边的方案数显然带多项式进去不好算那么我们拉格朗日插值对于x分别算1-n得到了n个值然后插值回来就可以了拉格朗日求系数我也没有找到好的博客于是找到学长求助结果他们说的我很懵逼【大概是我菜的真实于是自己YY了一个拉格朗日
- [矩阵树定理][prufer序][CF917D]Stranger Trees
ZLTJohn
DP图论杂题计数类问题线性基及其他线性代数相关数论杂知识点
题目描述给定一棵n个点组成的有标号的树T,我们定义两棵有标号的树的相似度为它们共有的边的个数。现在我们想知道,n个点的完全图所有的有标号的生成树中,有多少棵树与T的相似度为0,1,2…n-1,答案对10^9+7取模对于20%的数据,n#include#include#include#include#includeusingnamespacestd;typedeflonglongll;typedef
- [SP104 HIGH]Highways [HEOI2015]小Z的房间——矩阵树定理入门
ylsoi
高斯消元矩阵树定理
矩阵树定理:用于计算无向连通图的生成树个数。计算出整张图的度数矩阵D(即Di,iD_{i,i}Di,i表示i的度数),和邻接矩阵A(即Ai,jA_{i,j}Ai,j表示i和j的连边的数量),然后得到基尔霍夫矩阵(D-A),计算新矩阵的任意n-1阶主子式的绝对值即可。计算行列式的值:行列式的值直接计算复杂度太高,于是我们利用类似于高斯消元的方法将行列式消成一个上三角矩阵,不难得出此时除了主对角线之外
- 生成树计数问题——矩阵树定理及其证明
WerKeyTom_FTD
杂文矩阵树定理
生成树计数问题给一副n个节点的无向图G,求一个包含n-1条边的边集使得边集的边构成一颗树,问这样的边集的数量。矩阵树定理以下我们都不对重边与自环进行讨论。实际上,即使有重边矩阵树定理仍然是正确的。先定义度数矩阵D,是一个n*n的矩阵。Di,i=节点i的度数,对于i不等于j,Di,j=0。再定义邻接矩阵A,也是一个n*n的矩阵。i与j有边相连就有Ai,j=1否则Ai,j=0。最后定义基尔霍夫矩阵C=
- [洛谷P4111][HEOI2015]小Z的房间
weixin_34255793
题目大意:有一个$n\timesm$的房间,一些位置是房间,另一些位置是柱子,相邻两个房间之间有墙,问有多少种方案可以打通一些墙把所有房间连成一棵树,柱子不可以打通题解:矩阵树定理,把房间当点,墙当边,一张图的生成树个数为每个点的度数矩阵减去邻接矩阵的任意一个代数余子式的值。模数是$10^9$,不可以直接高斯消元,可以用辗转相除法来消元卡点:无C++Code:#include#include#in
- [HEOI2015]小Z的房间(矩阵树定理学习笔记)
weixin_34304013
题目描述你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路。现在,你希
- 洛谷 P3317 [SDOI2014]重建(矩阵树定理+数学推导) [bzoj3534]
weixin_34409822
传送门首先,大家应该都能看出来这是矩阵树定理,然后大部分人应该就会把概率直接带进去算,然后就愉快地WA掉了(我当时就是这么想的,幸亏没交)然后就来讲这个题的正解思路。首先我们来看答案应该是怎样的:ans=∑Tree∏(u,v)∈EP(u,v)∏(u,v)∉E(1−P(u,v))然后我们来想一下怎么来构造这个答案:首先,我们直接矩阵树用高斯算出来的结果应该是这个:now=∑Tree∏(u,v)∈EP
- 矩阵树定理及变元矩阵树定理
weixin_30677073
变元矩阵树定理:定义Kirchhoff矩阵\(K\),其中\(K_{ii}\)为所有与\(i\)相连的边的权值和\(K_{ij}\)为连接\(i\)与\(j\)的边权值和的负值那么\(\sum\limits_{tree\inT}\prod\limits_{E\intree}val(E)\),\(T\)为生成树集合,就是生成树的边积的和然后矩阵树定理就是把\(K_{ii}\)定义为\(i\)的度数\
- 【bzoj4031】[HEOI2015]小Z的房间 矩阵树定理模板
愤怒的愣头青
矩阵树定理学习资料
Description你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通
- [BEST定理 矩阵树定理] BZOJ 3659 Which Dreamed It
里阿奴摩西
Matrix-Tree定理图论
BESTtheorem一个证明?注意区分下题目中要求的“欧拉回路”的条数和定理中欧拉回路的条数欧拉回路是个回路所以存在循环同构题中要求起点是1实际上还要乘上1的度数因为从1的任一边出发在题中都算作一种不同方案#include#include#includeusingnamespacestd;typedeflonglongll;constintN=105;constintP=1000003;intn
- 【BZOJ】【P3534】【Sdoi2014】【重建】【题解】【矩阵树定理】
iamzky
OI
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3534dt学了矩阵树定理邻接矩阵中的的权可以不是1,而是其他权值,比如概率这样计算出来的就是所有生成树的概率和,即但是这样不对……生成一颗生成树T的概率应该是接着就是神奇的转换设G要求的矩阵,P是给出的矩阵我们令对G计算n-1阶主子式,即有那么把它乘上tmp答案就这么出来了!!!!当P=1时处
- [矩阵树定理][SDOI2014]重建
romiqi_new
矩阵树定理
BZOJ3534裸的矩阵树就不用说了吧只不过是一个简单的变元矩阵树,把概率放进去就行了Code:#include#definedbdouble#defineeps1e-7usingnamespacestd;inlineintread(){intres=0,f=1;charch=getchar();while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}w
- BZOJ3534: [Sdoi2014]重建【变元矩阵树定理】
XSamsara
BZOJ矩阵树定理
3534:[Sdoi2014]重建变元矩阵树定理邻接矩阵中是可以带权的,wijwijwij表示i,ji,ji,j的边权,eieiei表示边。定义G(i,j)=G(j,i)=wijG(i,j)=G(j,i)=wijG(i,j)=G(j,i)=wij,令G(i,i)=−∑j≠iG(i,j)G(i,i)=−∑_{j≠i}G(i,j)G(i,i)=−∑j̸=iG(i,j)那么n−1n−1n−1阶主子式的值
- 【BZOJ4894】天赋
cz_xuyixuan
【OJ】BZOJ【类型】做题记录
【题目链接】点击打开链接【思路要点】矩阵树定理同样可以计算有向图某个点的外向生成树的个数。具体方法就是认为度数为每个点的入度,删除一号点(树根)所在的行列,然后求行列式。时间复杂度O(N3)O(N3)。【代码】#includeusingnamespacestd;constintMAXN=305;constintP=1e9+7;templatevoidchkmax(T&x,Ty){x=max(x,y
- bzoj 4639 期望 矩阵树定理
SFN1036
矩阵树定理
题意有一个n个点m条边的图,每条边有长度和美丽值。求该图的所有最小生成树中美丽值的和的期望。满足长度相同的边的数量不超过30。n≤10000,m≤200000n\le10000,m\le200000n≤10000,m≤200000分析显然长度不同的边的贡献是独立的。那么我们可以把每一种距离的边拿出来,对每一个连通块分别处理。枚举同一个连通块中的每一条边,用矩阵树定理算出一定包含这条边的最小生成树的
- 【SPOJ】Highways(矩阵树定理)
小蒟蒻yyb
题面Vjudge洛谷题解矩阵树定理模板题无向图的矩阵树定理:对于一条边(u,v),给邻接矩阵上G[u][v],G[v][u]加一对于一条边(u,v),给度数矩阵上D[u][u],D[v][v]加一定义霍尔基夫矩阵C=D−G将基尔霍夫矩阵去除任意一行和任意一列之后,得到一个(n−1)∗(n−1)的行列式C求解这个行列式的值,最后的|det(C)|就是结果#include#include#includ
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,