Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
n个元素的集合{1,2,...,n}可以划分若干个非空子集。例如,当n=4时,集合{1,2,3,4}可以划分为15个不同的非空子集如下:
{{1},{2},{3},{4}}, {{1,2},{3},{4}}, {{1,3},{2},{4}}, {{1,4},{2},{3}}, {{2,3},{1},{4}}, {{2,4},{1},{3}}, {{3,4},{1},{2}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}}, {{1,2,3},{4}}, {{1,2,4},{3}}, {{1,3,4},{2}}, {{2,3,4},{1}}, {{1,2,3,4}}
给定正整数n(1<=n<=20),计算出n个元素的集合{1,2,...,n} 可以化为多少个不同的非空子集。
Input
Output
Sample Input
Sample Output
解题思路(From Internet):
设n个元素的集合可以划分为F(n,m)个不同的由m个非空子集组成的集合。
考虑3个元素的集合,可划分为
① 1个子集的集合:{{1,2,3}}
② 2个子集的集合:{{1,2},{3}},{{1,3},{2}},{{2,3},{1}}
③ 3个子集的集合:{{1},{2},{3}}
∴F(3,1)=1;F(3,2)=3;F(3,3)=1;
如果要求F(4,2)该怎么办呢?
A.往①里添一个元素{4},得到{{1,2,3},{4}}
B.往②里的任意一个子集添一个4,得到
{{1,2,4},{3}},{{1,2},{3,4}},
{{1,3,4},{2}},{{1,3},{2,4}},
{{2,3,4},{1}},{{2,3},{1,4}}
∴F(4,2)=F(3,1)+2*F(3,2)=1+2*3=7
推广,得F(n,m)=F(n-1,m-1)+m*F(n-1,m)
后来发现这就是组合数学里面的贝尔数。
Bell数的定义:第n个Bell数表示集合{1,2,3,...,n}的划分方案数,即:B[0] = 1;
每一个Bell数都是第二类Stirling数的和,即:
第二类Stirling数的意义是:S(n,k)表示将n个物体划分成k个非空的不可辨别的(可以理解为盒子没有编号)集合的方法
数。很明显,每一个Bell是对应的第二类Stirling数之和。
Bell数的指数生成函数是:
注意本题要用long long型。
/*
* Copyright (c) 2016, 烟台大学计算机与控制工程学院
* All rights reserved.
* 文件名称:number.cpp
* 作 者:单昕昕
* 完成日期:2016年4月29日
* 版 本 号:v1.0
*/
#include
#include
#include
#include
#include
using namespace std;
long long S(long long m,long long n)
{
if(m==1)
return 1;
if(m==n)
return 1;
else
return S(m-1,n-1)+S(m,n-1)*m;
}
int main()
{
long long n,i;
while(cin>>n)
{
long long sum=0;
for(i=1; i<=n; i++)
sum+=S(i,n);
cout<