- 机器人学中的数值优化(一)
Big David
数值优化数值优化
Preliminaries0前言最优解x∗x^{*}x∗在满足约束的所有向量中具有最小值。两个基本的假设:(1)目标函数有下界目标函数不能存在负无穷的值,这样会使得最小值无法在计算机中用浮点数表示,最小值可以很小但必须有界(2)目标函数具有有界子区间映射sub-levelsets就是下水平集,此时要求目标函数不能存在当x趋于无穷时函数趋于某个值即下水平集无界,这同样会导致最小值无法用浮点数表示f,
- 非精线搜索步长规则Armijo规则&Goldstein规则&Wolfe规则
Nie_Xun
算法
非精确线搜索步长规则在数值优化中,线搜索是一种寻找合适步长的策略,以确保在目标函数上获得足够的下降。如最速下降法,拟牛顿法这些常用的优化算法等,其中的线搜索步骤通常使用Armijo规则、Goldstein规则或Wolfe规则等。设无约束优化问题:minf(x), x∈Rn\minf(x),{\kern1pt}\,x\in{R^n}minf(x),x∈Rn参数迭代过程:xk+1←xk+αkdkx_
- 机器人中的数值优化进阶|【二】三次样条曲线推导(中)
影子鱼Alexios
algorithm机器人线性代数矩阵
机器人中的数值优化|【自用二】三次样条曲线推导接之前,由于ci=3(ηi+1−ηi)−2Di−Di+1c_i=3(\eta_{i+1}-\eta_i)-2D_i-D_{i+1}ci=3(ηi+1−ηi)−2Di−Di+1因此有c=3[−1100...00−110...000−11...0......000...−11]n×(n+1)η−[2100...00210...00011...0......
- 机器人中的数值优化进阶|【三】三次样条曲线推导(下)
影子鱼Alexios
algorithm机器人
机器人中的数值优化进阶|【三】三次样条曲线推导(下)接之前的内容,现在开始考虑势场函数P(η1,...,ηn−1)=1000∑i=1n−1∑j=0mmax(rj−∣∣ηi−oj∣∣,0)P(\eta_1,...,\eta_{n-1})=1000\sum_{i=1}^{n-1}\sum_{j=0}^{m}\max(r_j-||\eta_i-o_j||,0)P(η1,...,ηn−1)=1000i=
- 机器人中的数值优化进阶|【一】三次样条曲线推导(上)
影子鱼Alexios
algorithm机器人线性代数
机器人中的数值优化进阶|【一】三次样条曲线推导(上)三次样条曲线的定义在三次样条曲线中,样条曲线通过一系列控制点η=[η0,η1,...ηn]\eta=[\eta_0,\eta_1,...\eta_n]η=[η0,η1,...ηn]来实现对样条曲线的生成。控制点意味着样条曲线必然要经过这几个点。对于每一段曲线,都可以由s∈[0,1]s\in[0,1]s∈[0,1]来表征曲线,其定义为pi(s)=a
- isight调用matlab 遗传算法,ISIGHT优化算法分类
冯妥坨
isight调用matlab遗传算法
马上注册,结识更多同行,享用更多资源!您需要登录才可以下载或查看,没有帐号?注册xISIGHT中的单目标优化算法大致可分为以下三类:1数值优化方法数值优化算法通常假定设计空间是单峰,连续且凸的。在isight中提供的数值优化方法有:修正的可行方向法(ModifiedMethodofFeasibleDirections)广义下降梯度法(LargeScaleGeneralizedReducedGrad
- 运筹系列87:julia求解随机动态规划问题入门
IE06
运筹学julia动态规划代理模式
随机动态规划问题的特点是:有多个阶段,每个阶段的随机性互不相关,且有有限个实现值(finiterealizations)具有马尔可夫性质,即每个阶段只受上一个阶段影响,可以用状态转移方程来描述阶段与阶段之间的变化过程。我们使用julia的SDDP算法包来求解随机动态规划问题。1.入门案例:LinearPolicyGraph看一个简单的数值优化的例子:我们将其建立为一个N阶段的问题:初始值为M。使用
- 机器人中的数值优化之罚函数法
无意2121
数值优化算法机器人自动驾驶
欢迎大家关注我的B站:偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频(bilibili.com)本文ppt来自深蓝学院《机器人中的数值优化》目录1L2-PenaltyMethod1.1等式约束1.2不等式约束2L1-PenaltyMethod3BarrierMethod1L2-PenaltyMethod1.1等式约束对于等式约束,罚函数可以惩罚不满足等式约束的点
- UCB Data100:数据科学的原理和技巧:第十三章到第十五章
绝不原创的飞龙
数据科学python
十三、梯度下降原文:GradientDescent译者:飞龙协议:CCBY-NC-SA4.0学习成果优化复杂模型识别直接微积分或几何论证无法帮助解决损失函数的情况应用梯度下降进行数值优化到目前为止,我们已经非常熟悉选择模型和相应损失函数的过程,并通过选择最小化损失函数的θ\thetaθ的值来优化参数。到目前为止,我们已经通过以下两种方法优化了θ\thetaθ:1.使用微积分对损失函数关于θ\the
- 凸优化 3:最优化方法
Debroon
#凸优化算法
凸优化3:最优化方法最优化方法适用场景对比费马引理一阶优化算法梯度下降最速下降二阶优化算法牛顿法Hessian矩阵Hessian矩阵的逆Hessian矩阵和梯度的区别牛顿法和梯度下降法的区别拟牛顿法DFP、BFGS/L-BFGS数值优化算法坐标下降法SMO算法基于导数的函数优化解析优化算法/精确解无约束问题-求解驻点方程有等式约束问题-拉格朗日乘数法有等式和不等式约束问题-KKT条件基于随机数函数
- 基于优化的规划方法 - 数值优化基础 Frenet和笛卡尔的转换 问题建模 实现基于QP的路径优化算法
Big David
MotionplanningPlanning模块优化数值优化Frenet问题建模规划算法OSQP
本文讲解基于优化的规划算法,将从以下几个维度讲解:数值优化基础、Frenet与Cartesian的相互转换、问题建模OSQP1数值优化基础1.1优化的概念一般优化问题公式:f(x)f(x)f(x):目标/成本函数xxx:决策变量SSS:可行域|约束集Example:A点是最优值全局最优和局部最优的概念:1.2无约束优化当函数f可微,要成为局部最小值的必要条件是▽f(x)=0\bigtriangle
- 机器人中的数值优化之线性共轭梯度法
无意2121
数值优化算法自动驾驶机器人
欢迎大家关注我的B站:偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频(bilibili.com)本文ppt来自深蓝学院《机器人中的数值优化》目录1.无约束优化方法对比2.Hessian-vecproduct3.线性共轭梯度方法的步长编辑4.共轭梯度方向的求解5.线性共轭梯度方法整体流程1.无约束优化方法对比拟牛顿方法和牛顿共轭梯度方法是最优的,实现收敛速率与it
- 拓展进阶:Python 中 Scipy 的优化与拟合
theskylife
数据分析数据挖掘pythonscipy开发语言数据分析
写在开头在我们的Python科学计算之旅中,我们已经学习了Scipy库的基础功能,涉及数学运算、数据处理、统计分析等方面。然而,在实际的数据分析和科学研究中,我们经常面临着需要进一步优化算法和拟合数据的需求。本文将深入研究Scipy中的优化与拟合功能,探讨如何在实际问题中应用这些高级功能。1数值优化在实际的数据分析和科学研究中,我们常常面临着需要最小化或最大化某个目标函数的问题。Scipy的opt
- PSO粒子群算法
竹竹竹~
论文阅读算法
PSO通过最优化算法来自动进行参数搜索。算法基本原理:将鸟群觅食行为、算法原理和融合策略参数搜索对应,如下图:鸟群觅食粒子群算法融合策略参数搜索鸟粒子参数组森林求解空间参数空间食物的量目标函数值优化目标值每只鸟所处位置空间中的一个解(粒子位置)参数空间中的一组参数食物量最多的位置全局最优解最优参数组PSO算法适用性分析:PSO算法是一种随机的、并行的优化算法。优点:不要求被优化函数具有可微、可导、
- 强化学习算法TRPO的理解
北山杉林
算法人工智能强化学习
TrustRegionPolicyOptimization角度一:off-policy重要性采样ImportanceSampling梯度优化角度二:数值优化置信域优化蒙特卡洛近似TRPO算法的全称是TrustRegionPolicyOptimization,即信赖域策略优化。角度一:off-policy通常在强化学习策略梯度训练中,智能体每跟环境做一次完整的交互得到一条蒙特卡洛采样轨迹,策略网络的
- 智能优化算法-Tiki-taka算法Tiki Taka Algorithm(附Matlab代码)
88号技师
智能优化算法算法matlab开发语言启发式算法元启发式
引言本文介绍一种基于足球战术tiki-taka的新颖的运动灵感算法——Tiki-taka算法TikiTakaAlgorithm,TTA,用于数值优化和工程设计。该成果于2020年发表在EngineeringComputations。参考文献Rashid,MohdFadzilFaisaeAb.“Tiki-TakaAlgorithm:aNovelMetaheuristicInspiredbyFootb
- Nelder-Mead算法(智能优化之下山单纯形法)
想不到名字222
算法python
Nelder-Mead算法是一种求多元函数局部最小值的算法,其优点是不需要函数可导并能较快收敛到局部最小值。该算法需要提供函数自变量空间中的一个初始点x1,算法从该点出发寻找局部最小值Nelder-Mead方法也称下山单纯形法,是由JohnNelder&RogerMead于1965年提出的一种求解数值优化问题的启发式搜索给定n+1个顶点(i=1,2...,n+1),这些点对应的函数值为开始按以下算
- 显著提升!| (WOA)融合模拟退火和自适应变异的混沌鲸鱼优化算法应用于函数寻优
KAU的云实验台
MATLAB算法
鲸鱼优化算法(whaleoptimizationalgorithm,WOA)是由Mirjalili和Lewis[1]于2016年提出的一种新型群体智能优化搜索方法,它源于对自然界中座头鲸群体狩猎行为的模拟,与其它群体智能优化算法相比,WOA算法结构新颖,控制参数少,在许多数值优化和工程问题的求解中表现出较好的寻优性能,优于蚁群算法和粒子群算法等智能优化算法。WOA算法在面对多变量复杂问题时也存在搜
- 算法工程师护城河
韩师兄_
算法人工智能
目录一、大学打基础二、研究生进阶三、算法工程师护城河四、人生护城河五、小结5.1、35岁前的护城河5.2、35岁后的护城河下面是本人朋友的例子。一、大学打基础我是大学本科是计算机专业。在我上大学的时候,那时候是真的不懂算法人工智能,只是觉得这玩意高大上。学好很多专业课,只是为了拿奖学金,至于有什么用,我也不知道。但是在学期间认真学,多年以后,你一定会感谢当年的自己。例如:《信号系统》、《数值优化》
- 数学建模算法汇总
Believe yourself!!!
matlab数学建模算法动态规划线性代数
优化模型优化模型(1)三要素:决策变量、目标函数、约束单目标优化,多目标优化,数值优化,组合优化_luolang_103的博客-CSDN博客_单目标优化单目标(Single-ObjectiveOptimizationProblem)所评测目标只有一个,只需要根据具体的满足函数条件,求得最值多目标(Multi-objectiveOptimizationProblem)多目标优化问题中,同时存在多个最
- PyTorch入门学习(十四):优化器
不吃花椒的兔酱
PyTorchpytorch学习深度学习
目录一、优化器的重要性二、PyTorch中的深度学习三、优化器的选择一、优化器的重要性深度学习模型通常包含大量的参数,因此训练过程涉及到优化这些参数以减小损失函数的值。这个过程类似于找到函数的最小值,但由于模型通常非常复杂,所以需要依赖数值优化算法,即优化器。优化器的任务是调整模型参数,以最小化损失函数,从而提高模型的性能。二、PyTorch中的深度学习PyTorch是一个流行的深度学习框架,它提
- 机器学习中为什么需要梯度下降_机器学习数值优化入门:梯度下降
weixin_39913141
机器学习中为什么需要梯度下降
今天我们尝试用最简单的方式来理解梯度下降,在之后我们会尝试理解更复杂的内容,也会在各种各样的案例中使用梯度下降来求解(事实上之前线性回归模型中我们已经使用了它),感兴趣的同学欢迎关注后续的更新(以及之前的内容)。梯度下降的原理在数据科学中,我们经常要寻找某个模型的最优解。梯度下降就是数值优化问题的一种方案,它能帮助我们一步步接近目标值。在机器学习过程中,这个目标值往往对应着“最小的残差平方和”(比
- CAD模型旋转和AX=B的数值方法——《数值计算方法》
Dropdrag
线性代数矩阵算法
《数值计算方法》系列总目录第一章误差序列实验第二章非线性方程f(x)=0求根的数值方法第三章CAD模型旋转和AX=B的数值方法第四章插值与多项式逼近的数值计算方法第五章曲线拟合的数值方法第六章数值微分计算方法第七章数值积分计算方法第八章数值优化方法第三章一、算法原理1、CAD模型旋转原理2、三角分解法原理3、雅可比迭代法和高斯-赛德尔迭代法二、实验内容及核心算法代码1、CAD模型旋转原理实现2、三
- 激活函数小结:ReLU、ELU、Swish、GELU等
chencjiajy
深度学习激活函数深度学习
文章目录SigmoidTanhReLULeakyReLUPReLUELUSoftPlusMaxoutMishSwishGELUSwiGLUGEGLU资源激活函数是神经网络中的非线性函数,为了增强网络的表示能力和学习能力,激活函数有以下几点性质:连续且可导(允许少数点上不可导)的非线性函数。可导的激活函数可以直接利用数值优化的方法来学习网络参数。激活函数及其导函数要尽可能的简单,有利于提高网络计算效
- 常见的C/C++开源QP问题求解器
罗伯特祥
▶Algorithm/AIqp
1.qpSWIFTqpSWIFT是面向嵌入式和机器人应用的轻量级稀疏二次规划求解器。它采用带有MehrotraPredictor校正步骤和NesterovTodd缩放的Primal-DualInterioirPoint方法。开发语言:C文档:传送门项目:传送门2.OSQPOSQP(算子分裂二次规划)求解器是一个数值优化包,用于求解以下形式的凸二次规划:minimize12xTPx+qTxsubje
- 机器人中的数值优化(二十一)—— 伴随灵敏度分析、线性方程组求解器的分类和特点、优化软件
慕羽★
数值优化方法机器人人工智能数值优化最优化方法机器学习线性方程组求解器优化软件
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 三十三、伴随灵敏度分析 伴随灵敏度分析可以避免冗余信息的计算,在下面的例子中,我们想要求解Ax=b1、Ax=b2…Ax
- 机器人中的数值优化(四)—— 线搜索求步长(附程序实现)
慕羽★
数值优化方法机器人人工智能数值优化线搜索求步长机器学习
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 六、线搜索求步长 1、0.618方法 0.618方法方法适合于单峰函数,既具有“高-低-高”形状的函数,然而,在众多问题
- 机器人中的数值优化(二十)——函数的光滑化技巧
慕羽★
数值优化方法机器人最优化方法数值优化机器学习运动规划
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 三十二、函数的光滑化技巧 1、Infconvolution卷积操作 Infconvolution卷积操作适应于凸函数
- 机器人中的数值优化(十九)—— SOCP锥规划应用:时间最优路径参数化(TOPP)
慕羽★
数值优化方法机器人数值优化最优化方法机器学习锥规划最优路径
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 三十一、时间最优路径参数化(TOPP) 如果我们有一条二阶连续可微的路径q,现在我们想要机器人去跟踪这个路径,需要给这
- 机器人中的数值优化(十八)—— 锥增广的拉格朗日、半光滑的牛顿方法
慕羽★
数值优化方法机器人机器学习人工智能数值优化最优化方法拉格朗日法牛顿法
本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例 二十九、锥增广的拉格朗日 我们想要保持问题的凸性,然后找一个g(x)=1的p范数都是强半光滑的。 •所有Lipsch
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f