- 三对角线型行列式的求法
Mr-Apple
笔记线性代数矩阵算法
三对角线型行列式摘要典型例题练习题参考答案摘要笔者在复习高等代数行列式这章时,发现三对角行列式问题是行列式计算中经常出现的一类行列式,部分考研院校也曾直接出过三对角行列式的计算,亦或是三对角行列式的变体问题.本文主要介绍了一种通常情况下三对角行列式的解法,即采用特征根法来求解行列式的通项公式.例1:计算nnn阶行列式(ac≠0)(ac\neq0)(ac=0)Dn=∣bc0…000abc…0000
- 高等代数精解【9】
叶绿先锋
基础数学与应用数学线性代数矩阵
文章目录向量空间与矩阵矩阵的行列式矩阵A的秩保持不变方阵的行列式线性无关的条件1.线性组合为零向量的唯一性2.矩阵的秩3.几何解释(对于二维和三维空间)4.行列式(对于方阵)总结矩阵的非零子式基础重要性例子注意事项非奇异矩阵(也称为可逆矩阵或满秩矩阵)定义性质例子结论逆矩阵的计算高斯-约旦消元法Julia代码使用伴随矩阵和行列式的倒数来计算逆矩阵参考文献向量空间与矩阵矩阵的行列式矩阵A的秩保持不变
- 高等代数理论基础9:复系数与实系数多项式
溺于恐
复系数与实系数多项式代数基本定理定理:每个次数的复系数多项式在复数域中有一根等价叙述:每个次数的复系数多项式,在复数域上一定有一个一次因式注:由定理可知复数域上所有次数大于1的多项式全是可约的,即不可约多项式只有一次多项式复系数多项式因式分解定理定理:每个次数的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积复系数多项式具有标准分解式其中是不同的复数,标准分解式说明每个n次复系数多项式恰有n
- 线性变换零化多项式和最小多项式的概念和性质
patrickpdx
矩阵论
摘自邱维声《高等代数(下)》Chapter10.2,Page270摘自邱维声《高等代数(下)》Chapter10.3,Page276辨析摘自TheLinearAlgebraaBeginningGraduateStudentOughttoKnow(SecondEdition)JonathanS.GolanChapter12,Page249最小多项式的唯一性:零化多项式和最小多项式的关系:零化多项式是
- 高等代数8-1 λ-矩阵
GavinLinxs
高等代数线性代数
λ−\lambda-λ−矩阵 如果一个矩阵的元素是一元多项式环F[λ]\mathbbF[\lambda]F[λ]上的元素,那么这个矩阵就称为λ−\lambda-λ−矩阵.也就是A(λ)=(a11(λ)⋯a1n(λ)⋮⋱⋮as1(λ)⋯asn(λ)).\bmA(\lambda)=\begin{pmatrix}a_{11}(\lambda)&\cdots&a_{1n}(\lambda)\\\vdot
- 憨逼的考研日记(一)
星空_59e5
慢慢的,活成了自己最讨厌的样子(序言,本人今年大四毕业,三月份到八月份一直在小城单位工作,工资在平均7000左右。九月份回学校二战,金融跨考数学,目标某985。复习进度,数学分析复习到最后两章节,高等代数基础复习到第六章,共十章。政治英语没复习,还有十四天考试,去年凉,今年凉凉!)武汉的冬天真的有点冷,早上六点多脚蹬了一下墙,墙上留下了一个洞,我自己也醒了,瞄了一眼落地窗,漆黑黑的,等天亮了,在起
- 范畴论系列(一)初识范畴
数学
起因写这个系列起源于自己学习编程语言时遇到的问题,研究编程语言不可避免要与数学打交道,自己大学只学过数学分析和高等代数等数学系一年级课程,PLT(ProgrammingLanguageTheroy)需要的数学基础大致为:抽象代数(AbstractAlgebra)、拓扑(Topology)、范畴(CategoryTheory)等代数知识,在阅读相关PL书籍时,深感自己的无力。我又是一个"死磕"的人,
- 高等代数理论基础61:欧几里得空间
溺于恐
欧几里得空间欧几里得空间定义:设V是实数域R上一线性空间,在V上定义一个二元实函数,称为内积,记作,具有以下性质:1.2.3.4.其中是V中任意向量,k为任意实数,这样的线性空间V称为欧几里得空间注:1.欧几里得空间可以是有限维的,也可以是无限维的2.几何空间中向量的全体构成一个欧几里得空间例:1.线性空间中,对向量,定义内积构成一个欧几里得空间2.在闭区间上的所有实连续函数所成的空间中,对函数定
- Android中矩阵Matrix实现平移,旋转,缩放和翻转的用法详细介绍
孤舟簔笠翁
Android应用进阶篇android矩阵算法
一,矩阵Matrix的数学原理矩阵的数学原理涉及到矩阵的运算和变换,是高等代数学中的重要概念。在图形变换中,矩阵起到关键作用,通过矩阵的变换可以改变图形的位置、形状和大小。矩阵的运算是数值分析领域的重要问题,对矩阵进行分解和简化可以简化计算过程。对于一些特殊矩阵,如稀疏矩阵和准对角矩阵,有特定的快速运算算法。在MatrixMatrix中,矩阵的数学原理同样适用。Matrix提供了缩放、平移、旋转和
- 常系数微分方程组的V函数构造定理的解释
a03910
笔记
这是王高雄里的常微分方程里的二次型V函数的构造…一节的定理,定正矩阵,这个书里没注意到在哪,不过在高等代数中就是正定矩阵的意思,第二个划线部分矩阵里的微分运算,也是没见过的,看起来很有意思,但是原因呢?之前在证明刘维尔公式的时候有行列式求导运算,现在又有矩阵求导,其实没有特别的理由,就当作是一般的函数乘积求导而已,不过对于矩阵,只需要看作是n^2维向量值函数而已,然后按照数学分析中的多元函数微分即
- 基础数学知识是财务自由的保障
烨子墨
生活中,其实可以用简单的数学符号表示。我所强调的“什么更重要”,其实就是一个不等号“>”。比如:注意力>时间>金钱比如;人>内容>PPT图片发自App除了不等号之外,+-*/就已经足够了,其他多是多余的,让我们慢慢走近化繁为简的未来时代!你不必是一个天才。巴菲特说:“如果成为一个伟大的投资者需要积分或高等代数的知识,那我只能回去送报纸了。”巴菲特认为,现代金融理论对经济学家是有用的,但对于我们其余
- 2018-09-26
yeshan333
体验markdown添加链接我的博客添加图片百度上找的一级引用要判断一个人是否真正聪明,那就要看他能否根本不用动手,而工作却又能完成。二级引用在C++里,想搬起石头砸自己的脚更为困难了。不过一旦你真这么做了,整条腿都得报销!列表的使用一级列表pythonJavac++多级列表数学分析高等代数解析几何插入代码行内代码printf("helloworld");块代码,每行代码前四个空格或一个tabWo
- 做完这些_成为机器学习方面的专家
DARRENANJIAN
FWI思考与总结机器学习人工智能
简单记个帖子,用来记录学习机器学习的路线图1.数学分析,高等代数,概率论这三大件不多说,基础中的基础.2.对于编程工具,b站上500集的python教程---python面向对象编程五部曲(从零到就业).3.对于机器学习的理论板块,推荐b站up主---啥都会一点的研究生,里面有一个吴恩达最新版的教学视频,欢迎学习.接着为了继续学习理论板块,推荐看几本机器学习的书籍,网上资源很多内容应该都差不多,主
- Day26 大学专业怎么选? ——理科《高考》
邱真一
理科:注重理论研究,不太考虑应用实践,非常适合脑子好使、数理化高分的人学习。理科主要分为数理化生,和高中类似,但课业内容会从新手村调成了地狱模式。数学系数学系听起来就是那种高考数学145分的人才会选的系,他们是众人眼中的学霸,是人群里最健硕的大腿。【学习内容】数学系每天都是数学课:高等代数、数学分析、常微分方程、复变函数、泛函分析、拓扑学...随便讲一讲都能三天三夜不带重样的,非常充实。他们的日常
- 高等代数理论基础18:Cramer法则
溺于恐
Cramer法则Cramer法则定理:若线性方程组的系数矩阵的行列式,即系数行列式,则线性方程组有且仅有唯一解,且解可通过系数表为其中是把矩阵A中第j列换成方程组的常数项所成矩阵的行列式,即证明:齐次线性方程组定义:常数项全为零的线性方程组称为齐次线性方程组注:齐次线性方程组总是有解的,就是一个解,称为零解,此外为非零解定理:若齐次线性方程组的系数矩阵的行列式,则它只有零解,若方程组有非零解,则证
- openmp 处理数据竞争的问题 reduction
Eloudy
算法并行运算hpc
类似多线程竞争,需要加锁来保护类似,但实现原理不同,reduction并不会像多线程原子操作那样影响效率,因为它使用了高等代数里的单位元和结合律思想,为每个线程定义一个单位元,开始分段积累运算操作。1,不可避免竞争的示例hello_without_reduction.cpp#include#include#includeintmain(){floatsum=0;omp_set_num_thread
- 高等代数理论基础66:实对称矩阵的标准形
溺于恐
实对称矩阵的标准形对称矩阵的性质引理:设A是实对称矩阵,则A的特征值皆为实数证明:注:对实对称矩阵A,在n维欧氏空间上定义线性变换下的矩阵即A引理:设A是实对称矩阵,,有,或证明:注:引理将实对称矩阵的特性反映到线性变换上对称变换定义:欧氏空间中满足等式的线性变换称为对称变换注:对称变换在标准正交基下的矩阵是实对称矩阵引理:设是线性变换,是-子空间,则也是-子空间证明:引理:设A是实对称矩阵,则中
- 山西大学(双一流)2021–2022 学年第 2 学期-高等代数试卷
小明爱學習
人工智能大数据抽象代数
山西大学2021–2022学年第2学期-高等代数试卷山西大学介绍:山西大学(ShanxiUniversity),位于山西省太原市,是中国办学历史最悠久的高等学府之一,国家“双一流”建设高校,教育部和山西省人民政府共同建设的“部省合建高校”,山西省重点建设大学,是“中西部高校综合实力提升工程”、“中西部高校基础能力建设工程”、教育部基础学科拔尖学生培养计划2.0基地、“111”学科创新引智基地、英才
- 复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第七大题解答
dianyachuo4691
七、(本题10分)设$n$阶复方阵$A$的特征多项式为$f(\lambda)$,复系数多项式$g(\lambda)$满足$(f(\lambda),g'(\lambda))=1$.证明:$A$可对角化的充要条件是$g(A)$可对角化.证明先证必要性.设$A$可对角化,即存在非异阵$P$,使得$P^{-1}AP=\Lambda=\mathrm{diag}\{\lambda_1,\lambda_2,\c
- matlab产生过渡矩阵,浅谈向量空间和矩阵
布拉格小鸽子
matlab产生过渡矩阵
前言:和很多考研的研友交流发现很多人对线性代数抑或是高等代数中的向量空间和矩阵的理解不够深入还停留在表面上,这或许与所学专业有关,非数学专业的学生学的课程一般叫做《线性代数》,而我们数学专业的学生学得则是《高等代数》,两门课程前者偏重应用因此省略了很多证明过程,也就省略了很多的来龙去脉,在加上非数学专业的学生数学体系并不完善影响理解各种数学概念,而高等代数是一门抽象性学科这就更加让非数学专业的学生
- 高等代数第3版下 [丘维声 著] 2015年版_全国硕士研究生入学统一考试管理类联考综合能力考试大纲(2021年版)...
weixin_39742392
高等代数第3版下[丘维声著]2015年版
全国硕士研究生入学统一考试管理类专业学位联考综合能力考试大纲(2021年版)Ⅰ.考试性质综合能力考试是为高等院校和科研院所招收管理类专业学位硕士研究生而设置的具有选拨性质的全国联考科目。其目的是科学、公平、有效地测试考生是否具备攻读专业学位所必需的基本素质、一般能力和培养潜能。评价的标准是高等学校本科毕业生所能达到的及格或及格以上水平,以利于各高等学校和科研院所在专业上择优选拔,确保专业学位硕士研
- 《多目标进化优化》笔记
andy.wang0502
机器学习
目前在做多目标优化这块的研究,找了一本郑金华的《多目标进化优化》恶补下基础知识,有需要的可以下载电子版,一起优化优化。在此笔记来督促自己的科研进度,有个输出的过程,也方便和各位同方向的同学们一起交流探讨!多目标优化的基础知识:《高等代数》、《矩阵分析》和《凸优化》等基础数学的内容。主要分为多目标进化优化基础、多目标帕累托最优解集构造方法、多目标进化群体的分布性、多目标进化算法的收敛性、多目标进化算
- 矩阵乘法c语言 2*3,2*3和2*2矩阵乘法公式
沐雲閣主 荻生
矩阵乘法c语言2*3
3*3矩阵与3*2矩阵乘法公式3*3矩阵与3*2矩阵相乘结果:AB=aA+bB+cCaD+bE+cFdA+eB+fCdD+eE+fFgA+hB+iCgD+hE+iFA=abcdefghiB=ADBECF扩展资料:矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。2*3矩阵与2*2矩阵乘积的详细解法两个矩阵相乘,前者的列数应当等于后者的行数所以2*3矩阵显然不能和2*2矩阵相乘而2*2
- 数学专业课程《实变函数论》学习总结
萝卜丝皮尔
统计学数学
我觉得我们学院的老师不是在给我们传授各种数学知识,而是在告诉我们一个道理:你的能量超乎你想象……何出此言?自打入院以来,别人学“高等数学”,我们学“数学分析”;别人学“线性代数”,我们学“高等代数”,然后,解析几何,常微分方程(英文教学),矩阵计算(又称数值线性代数,双语教学),概率论与数理统计(峁诗松老师的教材,老厚一本),数值分析,等等未完待续吧我以为我再也学不会《数学分析》了,直到遇到了《实
- 高等代数 :1 线性方程组的解法
南村少年
高等代数线性代数
1线性方程组的解法1.1解线性方程组的矩阵消元法1、线性方程组:左端为未知量x的一次齐次式,右端是常数。关键词:系数、常数项、n元线性方程组、解集2、线性方程组的初等变换:1)把一个方程的倍数加到另一个方程上;2)互换两个方程位置;3)用一个非零数乘其中一个方程3、关键词:阶梯型方程组、简化阶梯型方程组、增广矩阵、系数矩阵、零矩阵、方阵、m级矩阵(方阵)、矩阵的初等变换4、阶梯型矩阵:1)零行在下
- 数学建模|极其不愿意上的一门课
曼珠沙华薇薇
大一,别人学高数,我们学数学分析;别人学线性代数,我们学高等代数!反正我们学的都是别人不知道的数学!大二,我们学离散数学,运筹学,概率论。大三一学期,我们学,常微分方程!二学期,我们学数学建模!在别人早已告别数学的时候,我们依然在学这些砸凑的数学!枯燥,无聊!明明很简单的数学问题,非要建立一个模型来求解!真的烦!烦自己为什么要选个数学专业!现在才会这么痛苦,这么无助的学这自己不喜欢的课!好想毕业啊
- 数据结构和算法--Java实现矩阵
挨踢SuperMan
数据结构和算法数据结构和算法矩阵java
相信朋友们对矩阵应该不陌生,它贯穿了几乎所有计算机应用数学的所有课程。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。下面我们简单复习下。什么是矩阵1.矩阵定义在数学中,矩阵(Matrix)是一个按照长方阵列排列的实数或复数的集合,最早来自于方程组的系数及常数所构成的方阵。由m×n个数aij排成的m行n列的数表称为m行n列的矩阵,简称m×n矩阵。记作:图1矩阵这m×n个数称为矩阵A
- 3.3 求高等代数问题
哥是八路
3.3.1解方程解一般的一元一次和一元二次方程解方程,和,我们首先需要把方程化成一般形式,然后带入solve()。>>>fromsympyimport*>>>x=Symbol('x')>>>solve(x-5-7)[12]>>>solve(x**2-5*x-7)[5/2+sqrt(53)/2,-sqrt(53)/2+5/2]>>>pprint(solve(x**2+x+1))#求解带复根的一元二次
- 北京大学计算机801考试大纲,2019年中国科学院大学801高等代数考研初试大纲
茸茸君
北京大学计算机801考试大纲
中国科学院大学硕士研究生入学考试《高等代数》考试大纲本《高等代数》考试大纲适用于中国科学院大学数学和系统科学等学科各专业硕士研究生入学考试。高等代数是大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。它的主要内容包括多项式、行列式和线性方程组、矩阵及其标准形、特征值和特征向量、线性变换和矩阵范数。要求考生熟悉基本概念、掌握基本定理、有较强的运算能力和综合分析解决问题能力。一
- 高斯消元法的MATLAB实现
Li_Y_P
线性代数矩阵numpy
这是一个基于最大主元的高斯消元法的matlab实现,代码中并未考虑对方程组是否有解以及解的唯一性的判断,具体原理可参考高等代数或《MATLAB数学建模》。functions=GuassSolution(A,b)%获取未知数的个数n=length(A(:,1));%寻找每一列的最大主元所在的行数fork=1:n-1[a,t]=max(abs(A(k:n,k)));p=t+k-1;ifa==0err
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla