递归树

递归树与时间复杂度分析

递归的思想就是,将大问题分解为小问题来求解,然后再将小问题分解为小小问题。这样一层一层地分解,直到问题的数据规模被分解得足够小,不用继续递归分解为止。
如果我们把这个一层一层的分解过程画成图,它其实就是一棵树。我们给这棵树起一个名字,叫作递归树。
现在我们就借助归并排序来看看,如何用递归树,来分析递归代码的时间复杂度。归并排序每次会将数据规模一分为二。我们把归并排序画成递归树,就是下面这个样子:


1.jpg

因为每次分解都是一分为二,所以代价很低,我们把时间上的消耗记作常量 1。归并算法中比较耗时的是归并操作,也就是把两个子数组合并为大数组。从图中我们可以看出,每一层归并操作消耗的时间总和是一样的,跟要排序的数据规模有关。我们把每一层归并操作消耗的时间记作 n。现在,我们只需要知道这棵树的高度 h,用高度 h 乘以每一层的时间消耗 n,就可以得到总的时间复杂度 O(n∗h)。
归并排序递归树是一棵满二叉树,满二叉树的高度大约是 log2​n,所以,归并排序递归实现的时间复杂度就是 O(nlogn)。我这里的时间复杂度都是估算的,对树的高度的计算也没有那么精确,但是这并不影响复杂度的计算结果。

实战一:分析快速排序的时间复杂度

快速排序在最好情况下,每次分区都能一分为二,这个时候用递推公式 T(n)=2T(2n​)+n,很容易就能推导出时间复杂度是 O(nlogn)。但是,我们并不可能每次分区都这么幸运,正好一分为二。我们假设平均情况下,每次分区之后,两个分区的大小比例为 1:k。当 k=9 时,如果用递推公式的方法来求解时间复杂度的话,递推公式就写成 T(n)=T(10n​)+T(109n​)+n。
我们还是取 k 等于 9,也就是说,每次分区都很不平均,一个分区是另一个分区的 9 倍。如果我们把递归分解的过程画成递归树,就是下面这个样子:


2.jpg

快速排序的过程中,每次分区都要遍历待分区区间的所有数据,所以,每一层分区操作所遍历的数据的个数之和就是 n。我们现在只要求出递归树的高度 h,这个快排过程遍历的数据个数就是 h∗n ,也就是说,时间复杂度就是 O(h∗n)。
我们知道,快速排序结束的条件就是待排序的小区间,大小为 1,也就是说叶子节点里的数据规模是 1。从根节点 n 到叶子节点 1,递归树中最短的一个路径每次都乘以 101​,最长的一个路径每次都乘以 109​。通过计算,我们可以得到,从根节点到叶子节点的最短路径是 log10​n,最长的路径是 log910​​n。


3.jpg

所以,遍历数据的个数总和就介于 nlog10​n 和 nlog910​​n 之间。根据复杂度的大 O 表示法,对数复杂度的底数不管是多少,我们统一写成 logn,所以,当分区大小比例是 1:9 时,快速排序的时间复杂度仍然是 O(nlogn)。
我们可以类比上面 k=9 的分析过程。当 k=99 的时候,树的最短路径就是 log100​n,最长路径是 log99100​​n,所以总遍历数据个数介于 nlog100​n 和 nlog99100​​n 之间。尽管底数变了,但是时间复杂度也仍然是 O(nlogn)。

实战二:分析斐波那契数列的时间复杂度

每次能上一个或者两个台阶,上n个台阶,有多少中走法。

int f(int n) {
  if (n == 1) return 1;
  if (n == 2) return 2;
  return f(n-1) + f(n-2);
}

先把上面的递归代码画成递归树,就是下面这个样子:


4.jpg

f(n) 分解为 f(n−1) 和 f(n−2),每次数据规模都是 −1 或者 −2,叶子节点的数据规模是 1 或者 2。所以,从根节点走到叶子节点,每条路径是长短不一的。如果每次都是 −1,那最长路径大约就是 n;如果每次都是 −2,那最短路径大约就是 n/2​。每次分解之后的合并操作只需要一次加法运算,我们把这次加法运算的时间消耗记作 1。所以,从上往下,第一层的总时间消耗是 1,第二层的总时间消耗是 2,第三层的总时间消耗就是 2的平方。依次类推,第 k 层的时间消耗就是 2的k-1次方,那整个算法的总的时间消耗就是每一层时间消耗之和。如果路径长度都为 n,那这个总和就是


5.jpg

如果路径长度都是 n/2​ ,那整个算法的总的时间消耗就是
6.jpg

所以,这个算法的时间复杂度就介于 O(2的n次方) 和 O(2的n/2次方​) 之间。虽然这样得到的结果还不够精确,只是一个范围,但是我们也基本上知道了上面算法的时间复杂度是指数级的,非常高。
有些代码比较适合用递推公式来分析,比如归并排序的时间复杂度、快速排序的最好情况时间复杂度;有些比较适合采用递归树来分析,比如快速排序的平均时间复杂度。而有些可能两个都不怎么适合使用,比如二叉树的递归前中后序遍历。

你可能感兴趣的:(递归树)