- 深度学习篇---深度学习相关知识点&关键名词含义
Ronin-Lotus
深度学习篇深度学习人工智能机器学习pytorchpaddlepaddlepython
文章目录前言第一部分:相关知识点一、基础铺垫层(必须掌握的核心基础)1.数学基础•线性代数•微积分•概率与统计2.编程基础3.机器学习基础二、深度学习核心层(神经网络与训练机制)1.神经网络基础2.激活函数(ActivationFunction)3.损失函数(LossFunction)4.优化算法(Optimization)5.反向传播(Backpropagation)6.正则化与调优三、进阶模型
- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- AI需要的基础数学知识
大囚长
机器学习大模型人工智能
AI(人工智能)涉及多个数学领域,以下是主要的基础数学知识:1.线性代数矩阵与向量:用于表示数据和模型参数。矩阵乘法:用于神经网络的前向传播。特征值与特征向量:用于降维和主成分分析(PCA)。奇异值分解(SVD):用于数据压缩和降维。2.微积分导数与偏导数:用于优化算法(如梯度下降)。链式法则:用于反向传播算法。积分:在概率和统计中有应用。3.概率与统计概率分布:如高斯分布、伯努利分布等。贝叶斯定
- 趣学贝叶斯统计:逻辑与二项分布
Ashleyxxihf
Python与统计统计概率论开发语言Courserapython
目录前言关键词:第三章逻辑第四章创建二项分布1.二项分布的结构2.组合学(combinatorics)3.计算期期望结果概率4.代码总结前言高中时概率与统计中,大家学过逻辑符号、二项分布。今天我们重新复习一下基本知识,系统梳理推导过程,并稍微进阶到代码和库的运用中。关键词:ANDORBUT二项分布概率质量函数(probabilitymassfunction,PMF)累计分布函数(Cumulativ
- Python——利用sympy模块进行数学计算
Fo*(Bi)
算法python数学建模
参考链接:SymPy简易教程SymPy库常用函数Pythonsympy模块常用功能(一)Python科学计算库SymPy初探简介SymPy是一个符号计算的Python库。它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。它完全由Python写成,不依赖于外部库。SymPy支持符号计算、高精度计算、模式匹配、绘图、解方程、微积分、组合数学、离散数学、几何学、概率与统计、物理
- 数理统计基础:参数估计与假设检验
_StarryNight_
机器学习概率论
在学习机器学习的过程中,我充分感受到概率与统计知识的重要性,熟悉相关概念思想对理解各种人工智能算法非常有意义,从而做到知其所以然。因此打算写这篇笔记,先好好梳理一下参数估计与假设检验的相关内容。1总体梳理先从整体结构上进行一个把握。数理统计的主要任务是通过样本的信息推断总体的信息,即统计推断工作。统计推断主要有两大类问题:参数估计和假设检验。它们都建立在抽样分布理论的基础之上,但角度不同。参数估计
- 18个常见的数据分析面试题-概率统计类
可乐的数据分析之路
总结了一些常见的概率与统计类的数据分析面试题,不定期更新......随机变量的含义一个随机事件的所有可能的值X,且每个可能值X都有确定的概率P,X就是P(X)的随机变量。比如掷骰子中出现的点数随机变量和随机试验间有什么关系随机试验:相同条件下对某随机现象进行的大量重复观测的试验,如掷硬币100次统计正面朝上的次数随机变量是用来描述随机试验结果的。划分连续型随机变量和离散型随机变量的依据离散型随机变
- LeetCode-470. 用 Rand7() 实现 Rand10()【数学 拒绝采样 概率与统计 随机化】
旋转的油纸伞
算法题leetcode算法职场和发展拒绝采样随机化
LeetCode-470.用Rand7实现Rand10【数学拒绝采样概率与统计随机化】题目描述:解题思路一:首先说一个结论就是`(rand_X()-1)×Y+rand_Y()==>[1,X*Y]`,即可以等概率的生成[1,X*Y]范围的随机数,其实就像军训的时候报数,Y是每一行的人数,X是列数【参考下面的图】。第二就是拒绝采样,效果是能够减少调用rand7()的调用次数。我们在利用`(rand_7
- 概率与统计
pig250
统计,根据过去的数据,进行归纳,做出总结(结论)比如:小新过去10年有十次创业,均失败了,推测他不适合创业。概率,根据给定的条件,做出推测比如:小新的爸爸是马化腾,推测出他创业成功的概率是99%。统计学:已知局部猜整体概率论:已知整体估局部互逆(1)演绎:从基本假设(即公理)、定理和条件顺推概率(分布),得到的是先验概率;这是概率论的主要领域,重在理论(原理)。(2)归纳:从样本的概率(分布)逆推
- 最大似然估计与最大后验概率估计
陈城南
概率与统计概率是已知模型、参数推数据,而统计是已知数据推模型和参数。似然和概率是两个意思很相似的词,但含义不同。相当于从不同视角理解同一个东西。对于函数,其中x为数据,为参数。若参数是确定的,数据x是未知的,则P叫概率函数。描述的是,对于不同的样本x,其出现时的概率是多少;若数据x是已知的,参数是未知的,则P就叫似然函数。描述的是,对于不同的参数,出现样本点x的概率是多少;贝叶斯公式最大似然估计已
- 条件概率、联合概率、边缘概率的区别及独立事件、古典概型
喔就是哦噢喔
DeepLearn概率论
深入学习机器学习、分布式算法才发现概率与统计,线代都很重要,下面我简单串一下如题目所示的知识第一步:P(A|B)是在条件B发生的情况下A发生的概率,P(AB)是条件A与B同时发生的概率。关于条件概率、联合概率的例子我在最后一步骤举出,如独立事件和古典概型都懂,则请跳至最后一步看例子先记牢靠公式:在这里,可以按照下图来理解:P(AB)等于图中的A交B的部分的概率,而P(A|B)等于A交B的面积的占B
- GeoGebra:数学动画制作工具重磅来袭
人工智能大讲堂
学习资料线性代数机器学习数学可视化工具
【线性代数】线性代数可视化工具:manimmanim是之前我跟大家分享的一个线性代数动画制作工具。但我之前的描述有些许偏差,这里要更正一下,manim不仅限于制作线性代数动画,也可以制作数学其他学科的动画,例如微积分,概率与统计等等,甚至还可以制作物理动画。今天跟大家分享的GeoGebra同样是一个数学动画制作工具,既然有manim为什么还要介绍GeoGebra呢?这要从manim的自身的特点说起
- 2021单招十类计算机试题,2021年河北省高职单招考试十类和高职单招对口电子电工类、对口计算机类联考文化素质考试(数学)考试大纲...
这件事情足够自信
2021单招十类计算机试题
2021年河北省高职单招考试十类和高职单招对口电子电工类、对口计算机类联考文化素质考试(数学)考试大纲一、考试总体要求单招数学学科考试旨在测试中学数学基础知识、基本技能、基本方法,考查数学思维能力、归纳抽象、符号表示、运算求解以及运用所学数学知识和方法分析问题和解决问题的能力。复习考试范围包括代数、三角、平面解析几何和概率与统计初步四部分。考试内容的知识要求和能力要求作如下说明:(一)知识要求1.
- 路线_机器学习
榴霖燚炀
深度学习机器学习学习路线
1.引言2.机器学习关注问题3.入门方法与学习路径3.1数学基础3.1.1微积分3.1.2线性代数3.1.3概率与统计3.2典型算法3.3编程语言、工具和环境3.3.1python3.3.2R3.3.3其他语言3.3.4大数据相关3.3.5操作系统3.4基本工作流程3.4.1抽象成数学问题3.4.2获取数据3.4.3特征预处理与特征选择3.4.4训练模型与调优3.4.5模型诊断3.4.6模型融合3
- 【OpenCV 例程 300篇】233. 区域特征之矩不变量
youcans_
#opencvpython图像处理计算机视觉
『youcans的OpenCV例程200篇-总目录』【youcans的OpenCV例程300篇】233.区域特征之矩不变量4.4区域特征之矩不变量矩是概率与统计中的一个概念,是随机变量的一种数字特征。矩函数在图像分析中有着广泛的应用,如模式识别、目标分类、图像编码与重构等。把图像的像素坐标视为二维随机变量(X,Y),就可以用矩来描述灰度图像的特征。图像矩是对特征进行参数描述的一种算法,通常描述了图
- 第六讲:非线性优化(上)
兔子不吃草~
视觉SLAM十四讲线性代数矩阵算法笔记概率论c++
第六讲:非线性优化(上)文章目录第六讲:非线性优化(上)1概率论与统计学基础1.1概率与统计关系1.2概率密度函数1.3贝叶斯公式1.4矩1.5方差与协方差矩阵1.5.1方差1.5.2协方差矩阵1.5.3方差与协方差的区别1.6统计独立性与不相关性1.7高斯概率密度函数1.7.1一维高斯分布1.7.2二维高斯分布1.7.3N维高斯分布1.7.4高斯分布线性运算1.8似然函数p(x∣θ)p(x|\t
- 人工智能数学基础--概率与统计1:随机试验、样本空间、事件、概率公理定理以及条件概率和贝叶斯法则
LaoYuanPython
老猿Python人工智能数学基础人工智能概率论概率统计贝叶斯法则样本空间
随机试验我们都非常熟悉在科学研究和工程中试验的重要性。试验对我们是有用的,因为我们可以假定,在非常接近的确定条件下进行固定的试验,基本上会得到相同的结果。在这样的环境中,我们可以控制那些对试验结果有影响的变量的值。然而在某些试验中,我们不可能断定或控制一些变量的值,虽然大多数的条件都是相同的,但每一次试验的结果会不同。这样的试验称为随机的。样本空间由随机试验的一切可能的结果组成的一个集合S,称为样
- 21. 概率与统计 - 数学期望、统计描述&分布
茶桁
茶桁的AI秘籍-数学篇数学人工智能概率分布
文章目录数学期望方差标准差协方差二项分布高斯分布中心极限定理泊松分布Hi,你好。我是茶桁。在上一节中,我们最后有谈到随机变量。在概率论几统计学中,描述一个随机变量的离散程度的有方差、标准差等等。那么在这节课中,我们就来好好看看这些概念。不过在这之前呢,我们先来看看什么是「数学期望」。数学期望数学期望告诉我们,对于随机试验的结果,我们可以有怎样定量的期待。也就是说,实验还没做之前,可以有怎么样的一个
- 19. 概率与统计 - 频率派&贝叶斯派
茶桁
茶桁的AI秘籍-数学篇人工智能数学概率论
文章目录频数和频率频率派视角下的概率贝叶斯派视角下的概率Hi,您好。我是茶桁。本节课,咱们开始学习「概率&统计」的部分,说实话,这个部分是我觉得最有意思的地方。在之前的课程中,除了导论课给大家过了一遍通识性的各个领域的一些知识之外,我们已经上过了关于微积分、还有关于先行代数的一些东西。都是和我们在未来人工智能这个领域所运用到的方面有很强的一个联系,包括现在我们要学习的概率统计也是一样。虽然它是和导
- 人工智能数学基础--概率与统计5:独立随机变量和变量替换
LaoYuanPython
老猿Python人工智能数学基础人工智能概率论随机变量高等数学概率统计
一、独立随机变量1.1、离散的独立随机变量假设X和Y是离散的随机变量,若事件X=x和Y=y对所有的x和y都是独立事件(独立事件定义请参考《人工智能数学基础–概率与统计1:随机试验、样本空间、事件、概率公理定理以及条件概率和贝叶斯法则》),则称X和Y是独立随机变量,在该情形:P(X=x,Y=y)=P(X=x)P(Y=y) (27)或等价于f(x,y)=f1(x)f2(y) (28)相反地
- 20. 概率与统计 - 概型、概率和随机变量
茶桁
茶桁的AI秘籍-数学篇概率论数学
文章目录古典概型几何概型联合概率条件概率随机变量Hi,您好。我是茶桁。在开始今天的课程之前呢,先跟大家提一句抱歉,上一节课程本应该是《19.概率与统计-频率派&贝叶斯派》,但是标题写错了。其中部分文章我已经做了修改,但是公众号内由于不给修改,所以就放着没动。而上节课标题中的内容,「古典概型&几何概型」应该是今天的课程才对。除了概型之外,我们今天还要介绍一下几种概率以及随机变量。好,话不多说,让我们
- 线性回归方程
Risehuxyc
Math线性回归算法回归
性回归是利用数理统计中的回归分析来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法,是变量间的相关关系中最重要的一部分,主要考查概率与统计知识,考察学生的阅读能力、数据处理能力及运算能力,题目难度中等,应用广泛.线性回归方程公式规律总结(3)回归分析是处理变量相关关系的一种数学方法.主要用来解决:①确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;②根据一组观察值,预
- 国外AI大牛推荐的10大最有帮助免费在线机器学习课程
机器学习与系统
woman_ml.jpg本文编译自twitter用户chipro斯坦福在线自学课程《概率与统计》:该课程涉及概率统计的基本概念,涵盖机器学习4个基本方面:探索性数据分析,产生数据,概率和推理。MIT的《线性代数》:这是我见过的最好的线性代数课程,由传奇教授GilbertStrang(吉尔伯特斯特朗)教授。斯坦福的CS231N:用于视觉识别的卷积神经网络:平衡理论与实践。课堂笔记写得很好,解释了不同
- 人工智能数学基础--概率与统计15:多维随机变量/向量
LaoYuanPython
老猿Python人工智能数学基础人工智能概率论概率统计边缘分布多维随机变量
一、多维随机变量定义一般地,设X=(X1,X2,···,X,)为一个n维向量,其每个分量,即X1、···、Xn都是一维随机变量,则称X是一个n维随机向量或n维随机变量。与随机变量一样,随机向量也有离散型和连续型之分。二、离散型多维随机向量一个随机向量X=(X1,···,Xn),如果其每一个分量Xi都是一维离散型随机变量,则称X为离散型的。2.1、离散型多维随机向量的概率定义2.1以ai1,ai2,
- 如何做出更正确的商业决策
任性的Cissy
如何做出更正确的商业决策1、学好数学,尤其是概率与统计。对有办法验证客观概率的,求助数学,不要依靠主观判断。2、对没有办法验证客观概率的,也不要过于相信自己的主观直觉。问问专业顾问,或者身边更多朋友的建议,用他们的人生经历,对冲你的先入为主。
- 概率与统计
张叁疯_
这周学的很懵,这老师讲的也很潦草,勉强整理了一些ppt的笔记需要转Github查看:阿龙的概率统计整理主要有关于在总体方差已知和未知两种不同的情况下犯第一类错误和第二类错误的假设检验,置信区间,置信度。第一类错误与第二类错误的区分我不是科班出身,深入的消化吸收还需要时间,最好是多多利用这种理论。下周还要概率统计,想想就头大。。。。。。还要花时间继续复习之前的案例和mysql语法,希望9月10月找到
- 数学——七桥问题——图论
Sirius·Black(有关必回)
数学机器学习人工智能
当涉及数学,有很多不同的话题可以讨论。你是否有特定的数学领域、概念或问题想要了解更多?以下是一些常见的数学领域和主题,你可以选择一个或者告诉我你感兴趣的具体内容,我将很乐意为你提供更多信息:代数学:包括代数方程、多项式、群论、环论等。几何学:从欧几里得几何到非欧几何,涉及空间、形状、位置等。微积分:研究变化率和积分,是分析学的基础。概率与统计:研究随机事件的概率和数据的分析。数论:研究整数的性质,
- 山东大学软件学院考试回忆——大二上
叶卡捷琳堡
vue
文章目录学习科目整体回忆上课考试回忆Web技术大学物理概率与统计计算机组织与结构离散数学(2)数据结构(双语)学习科目Web技术大学物理概率与统计计算机组织与结构离散数学(2)(双语)数据结构(双语)整体回忆大二上有两门专业基础课挺重要的,分别是数据结构和计算机组成原理。Web技术主要倾向于自学+完成项目。大二上整体的感觉是实验较多,Web,数据结构,机组都有实验。自学的内容也很多,比如web技术
- 原创二:八上数学生长框架图
昱溪_32d6
图片发自App开学第一节数学课,我做了三件事:一、点评暑假作业完成情况及德育教育(10分钟左右);二、引导学生梳理七年级与本学期内容;三、提出本学期学习要求(5分钟左右)。第二部分为本课重点,旨在让学生站在一个新的高度来回望七年级所学内容,同时引出八下内容。学生通过回顾七年级内容,将七年级所有内容分为三类:数与式、图形与几何、概率与统计,再将七年级一学年各章节内容一一进行归类。在此过程中,点出七年
- 人工智能数学基础
Kali与编程~
初学AI与人工智能人工智能机器学习计算机视觉
第一章人工智能概述1.1人工智能的概念和历史1.2人工智能的发展趋势和挑战1.3人工智能的伦理和社会问题第二章数学基础1.1线性代数1.2概率与统计1.3微积分第三章监督学习1.1无监督学习1.2半监督学习1.3增强学习第四章深度学习1.1神经网络的基本原理1.2深度学习的算法和应用第五章自然语言处理1.1语言模型1.2文本分类1.3信息检索第六章计算机视觉1.1图像分类1.2目标检测1.3图像分
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息