- 深度学习驱动下的字符识别:挑战与创新
逼子歌
神经网络深度学习字符识别卷积神经网络图像处理特征提取
一、引言1.1研究背景深度学习在字符识别领域具有至关重要的地位。随着信息技术的飞速发展,对字符识别的准确性和效率要求越来越高。字符识别作为计算机视觉领域的一个重要研究方向,其主要目的是将各种形式的字符转换成计算机可识别的文本信息。近年来,深度学习技术在字符识别领域取得了显著的进展。国内研究者主要使用基于模板匹配的方法、基于统计模型的方法、基于神经网络的方法等各种方法进行字符识别研究。目前,国内各大
- 2024 数学建模国赛 C 题模型及算法(无废话版)
不染53
数学建模数学建模算法python
目录写在开始需要掌握的数学模型/算法评价体系/评价类问题时间序列处理数据降维聚类问题(无监督)分类问题(有监督)集成学习(Bagging/Boosting)回归问题关联分析统计学方法/统计模型智能优化算法需要掌握的Python专业库需要掌握的软件/工具写在开始本人获2023年数学建模国赛C题国家级一等奖,备赛期间专攻C题。本文总结了在备赛期间总结的模型和算法,足以应对90%国赛C题中涉及到的问题。
- 基于 LDA SS-NMF 的文本主题分析可视化分析系统 毕业设计 附完整代码
程序员奇奇
计算机毕设课程设计python人工智能LDA主题分析
摘要在机器学习和自然语言处理领域中,主题模型(TopicModel)是在一系列文档中发现抽象主题的一种统计模型,并被广泛地应用于文本文档集合的分析。近年来,各种主题建模技术,特别是概率图建模技术,取得了显著的进展,其中隐含狄利克雷分布(LDA)等最先进的技术已经成功地应用于可视化文本分析。然而,大多数基于概率模型的方法在多次运行的一致性和经验收敛性方面存在缺陷。此外,由于公式和算法的复杂性,LDA
- 计量经济学中的检验——F检验(概念、检验假设、适用条件及操作流程)
佛系研go
计量经济学笔记
接之前的t检验博文F检验的适用场景从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t检验或变量变换或秩和检验等方法。什么是F检验F检验是在零假设下检验统计量具有F分布的统计检验。它最常用于比较已拟合到数据集的统计模型,以识别最适合数据抽样总体的模型。精确的“F检验”主要出现在当模型用最小二乘法拟合数
- 模型评估:可决系数与纳什效率系数
~hello world~
学习笔记机器学习python人工智能
1、可决系数R2 可决系数(Coefficientofdetermination,R)是用来度量一个统计模型的拟合优度的。其数学表达式如下:式中:yi是变量观测值;y‾\overline{y}y是变量观测值的均值; y^i\hat{y}_iy^i是统计模型的变量模拟值; R2的取值范围为[0,1]。2、纳什效率系数NSE 纳什效率系数(Nash-SutcliffeEfficiency,NS
- 逻辑回归C参数选择,利用交叉验证实现
吃什么芹菜卷
机器学习逻辑回归算法机器学习笔记
目录前言一、C参数二、交叉验证1.交叉验证是什么2.交叉验证的基本原理3.交叉验证的作用4.常见的交叉验证方法三、k折交叉验证四、C参数和k折交叉验证的关系五、代码实现1.导入库2.k折交叉验证选择C参数3.建立最优模型总结前言逻辑回归(LogisticRegression)是一种用于二分类问题的统计模型和机器学习算法,旨在预测事件的概率。它基于一个线性模型,并通过一个逻辑函数(通常是Sigmoi
- 【机器学习】是什么?
dami_king
机器学习
机器学习(MachineLearning,ML)是一门多领域交叉学科,属于人工智能(ArtificialIntelligence,AI)的一个分支,致力于研究和构建算法及统计模型,让计算机系统能够在没有明确编程指令的情况下,通过分析和学习数据集中的规律与模式,从而获得新知识、发现内在联系、做出预测或者决策的能力。简单来说,机器学习就是使计算机程序能够从经验中学习和改进。以下是机器学习的一些核心概念
- 异常检测-基于统计学的方法-学习笔记-2
Rank_Fan007
异常检测的学习笔记并非原创,而是搜索各位大佬的帖子整理而得。如有冒犯,请联系我。1.概述统计学⽅法对数据的正常性做出假定。它们假定正常的数据对象由⼀个统计模型产⽣,而不遵守该模型的数据是异常点。异常检测的统计学⽅法的⼀般思想是:学习⼀个拟合给定数据集的⽣成模型,然后识别该模型低概率区域中的对象,把它们作为异常点。根据如何指定和学习模型,异常检测的统计学⽅法可以划分为两个主要类型:参数⽅法和⾮参数⽅
- R语言中的Stan概率编程MCMC采样的贝叶斯模型|附代码数据
数据挖掘深度学习机器学习算法
原文链接:http://tecdat.cn/?p=11161最近我们被客户要求撰写关于贝叶斯模型的研究报告,包括一些图形和统计输出。概率编程使我们能够实现统计模型,而不必担心技术细节。这对于基于MCMC采样的贝叶斯模型特别有用R语言中RStan贝叶斯层次模型分析示例stan简介Stan是用于贝叶斯推理的C++库。它基于No-U-Turn采样器(NUTS),该采样器用于根据用户指定的模型和数据估计后
- statsmodels专栏1——探索数据的起点:Python中的statsmodels库简介
theskylife
数据分析python学习之旅python开发语言数据分析线性回归数学建模
1引言在当今数据驱动的世界中,数据分析成为了解决问题和做出决策的关键步骤。为了更深入地了解和探索数据,我们需要强大而灵活的工具。其中,Statsmodels库是Python中一个不可或缺的工具,它为数据分析提供了丰富的统计模型和测试的功能。1.1数据分析基本概念在开始探讨Statsmodels之前,让我们简要回顾一下数据分析的基本概念。数据分析是一项系统性的过程,旨在从大量数据中提取有意义的信息和
- 2020-10-15重复性限r与再现性限R
孤独的坚果儿
分析实践中往往关心的是两个或多个测试结果是否符合方法精密度的要求,为此需确定一些类似临界值或允许差之类的度量,而不仅标准差的值。根据重复性的定义,同一操作员在同一实验室内做两次独立测量,其测试结果为,统计模型y1=m+B1+e1;y2=m+B1+e2y1-y2=e1-e2,y1-y2服从正态分布的随机变量y1-y2的均值E(y1-y2)=E(e1-e2)=0y1-y2的方差D(y1-y2)=D(y
- [Python] 什么是逻辑回归模型?使用scikit-learn中的LogisticRegression来解决乳腺癌数据集上的二分类问题
老狼IT工作室
机器学习pythonpython逻辑回归scikit-learn
什么是线性回归和逻辑回归?线性回归是一种用于解决回归问题的统计模型。它通过建立自变量(或特征)与因变量之间的线性关系来预测连续数值的输出。线性回归的目标是找到一条直线(或超平面),使得预测值与观察值之间的残差(误差)最小化。这条直线或超平面可以用来表示输入变量与输出变量之间的关系。线性回归假设输入特征与输出之间存在线性关系,并且残差服从正态分布。线性回归适用于预测和推断,常见应用包括房价预测、销售
- 为什么我们不能预测未来?
李儒雅
从古代到现代,所有的文明都有占卜或算命的传统;现在,我们有数据和统计模型,可以让我们对未来有所了解。但是,如果任凭我们自己的设备,我们中的大多数人在预测将会发生什么方面都很糟糕,这是人脑连线的结果。总的来说,影响我们思考、决策和与他人互动方式的思维模式被称为认知偏差。这些偏见中的许多还扭曲了我们对选举、经济和日常生活中发生的事情的看法,不管我们展望未来50年还是50分钟。据加州大学伯克利分校哈斯商
- 生信学习笔记1:学习如何用OPLS-DA分析代谢组数据(从入门到掌握)
盲人骑瞎马5555
生物信息学学习人工智能算法OPLS-DA
偏最小二乘法(PLS)和正交偏最小二乘法(OPLS)是统计模型,用于寻找两组数据矩阵之间的关系。它们广泛应用于化学计量学、生物信息学、经济预测等领域。偏最小二乘法(PLS)偏最小二乘法是一种多变量分析方法,主要用于找到两组数据(通常是预测变量集和响应变量集)之间的线性关系。在PLS模型中,从预测变量的数据集中提取出几个主成分(潜变量),并尝试使这些潜变量尽可能多地解释响应变量的方差。这使得PLS特
- 隐马尔可夫模型系列——(二)模型参数
飞影铠甲
机器学习人工智能机器学习数学建模
一、概述隐马尔可夫模型(HiddenMarkovModel,HMM)是一种常见的统计模型,用于描述一个含有隐藏状态的马尔可夫过程。在该模型中,系统的状态虽然无法直接观测到(即“隐藏的”),但会通过与其相关的观测状态进行间接观测。隐马尔可夫模型在自然语言处理、语音识别、生物信息学和金融领域等方面有着广泛的应用。本文将从模型参数的角度详细介绍隐马尔可夫模型中的三个关键要素:隐藏状态、观测状态和状态转移
- 隐马尔可夫模型系列——(六)总结与展望
飞影铠甲
人工智能机器学习数学建模
一、总结:隐马尔可夫模型(HiddenMarkovModel,HMM)是一种用于建模序列数据的统计模型,在语音识别、自然语言处理、金融领域等多个领域都有广泛的应用。其优势包括可以处理动态序列数据、具有一定的鲁棒性、可以灵活地建模不同状态之间的转移关系等。在语音识别中,HMM可以帮助解决噪声和失真对识别准确率的影响;在自然语言处理中,HMM可以用于词性标注、语法分析等任务;在金融领域,HMM可以帮助
- 机器学习之遗传算法(Genetic Algorithm)
贾斯汀玛尔斯
数据湖python机器学习人工智能
机器学习(MachineLearning)是一种通过使用算法和统计模型,使计算机系统能够从数据中学习并改善性能的领域。而遗传算法(GeneticAlgorithm)是一种受到自然选择和遗传学原理启发的优化算法,用于寻找问题的最优解或近似最优解。遗传算法的基本思想是通过模拟自然选择和遗传机制,逐步演化一组个体以找到最适应环境的解决方案。这个过程包括选择、交叉(交叉互换基因信息)、变异(基因随机变化)
- 基于python的客流统计_客流统计分析系统的技术
weixin_39693437
基于python的客流统计
客流统计分析系统采用了基于运动目标智能跟踪与识别技术,并通过人工神经网络(ANN)、关键特征匹配等算法和智能统计模型,对指定单个或多个监控系统区域(如场馆、商业街、地铁出入口、展会场馆)客流进行视频监控、运动分析和特征分类,精确检测出通过该区域客流量数据,实现对客流数据的精确、双向统计。不同于热区,客流热区是一款针对于景区经营管理所诞生的一种客流分析工具,所谓的客流热区是指在一定的经营范围之内,全
- numpy实现随机漫步
小书同学
随机漫步RandomWalk随机漫步是一种数学统计模型,它由一连串轨迹所组成,其中每一次都是随机的,它能用来表示不规则的变动形式,如同一个人乱步所形成的随机记录。在这里用一种简单的模式来实现,从0开始,步进为1或者-1,两种步进的发生的概率相等。1、用random模块实现importrandomimportmatplotlib.pyplotaspltposition=0walk=[position
- 自然语言处理中的注意力机制与Transformer架构
OpenChat
自然语言处理transformer人工智能深度学习
1.背景介绍自然语言处理(NLP)是计算机科学和人工智能领域的一个重要分支,旨在让计算机理解和生成人类语言。自然语言处理的一个重要任务是机器翻译,即将一种自然语言翻译成另一种自然语言。传统的机器翻译方法通常使用规则引擎或统计模型,但这些方法在处理复杂句子和长文本时效果有限。随着深度学习技术的发展,神经网络在自然语言处理领域取得了显著的进展。2017年,Vaswani等人提出了一种新的神经网络架构—
- R数据分析:非劣效性研究设计的统计处理方法,原理和实例
公众号Codewar原创作者
r语言数据分析开发语言
在我们经常接触的统计模式中,我们是在寻求推翻原假设,证明差异,这种统计模型在传统的临床试验中,在各种统计推断中已经成为默认了。在传统的临床试验中通常会将一种新的治疗方法与标准治疗或安慰剂进行比较,从而证明这种新治疗具有更好的疗效,这类试验的原假设是这两种治疗方案的治疗效果没有差异。如果统计分析拒绝这一假设,说明这两种治疗的疗效是有差别的,即出现统计学上差异性展示出显著的P值,这个时候就证明了我们的
- Paddle:统计模型Flops
微风❤水墨
Paddlepaddle深度学习人工智能
函数接口:paddle.flops(net,input_size,custom_ops=None,print_detail=False)参数说明:net(paddle.nn.Layer|paddle.static.Program)-网络实例,必须是paddle.nn.Layer的子类或者静态图下的paddle.static.Program。input_size(list)-输入Tensor的大小。
- [深度学习]PaddleClas:统计模型Flops
或许,这就是梦想吧!
深度学习人工智能
PaddleClas:统计模型Flops函数接口paddle.flops(net,input_size,custom_ops=None,print_detail=False)[源代码]作用为:打印网络的基础结构和参数信息。参数net(paddle.nn.Layer|paddle.static.Program)-网络实例,必须是paddle.nn.Layer的子类或者静态图下的paddle.stat
- MATLAB环境下一种音频降噪优化方法—基于时频正则化重叠群收缩
哥廷根数学学派
信号处理小波分析图像处理语音识别人工智能
语音增强是语音信号处理领域中的一个重大分支,这一分支已经得到国内外学者的广泛研究。当今时代,随着近六十年来的不断发展,己经产生了许多有效的语音增强算法。根据语音增强过程中是否利用语音和噪声的先验信息,语音增强算法一般被归类为两类,一类是无先验信息的语音增强算法,另外一类则是具有先验信息的语音增强算法。在第一类无先验信息语音增强算法中,比较常用的语音增强算法有谱减算法、基于统计模型的算法、基于信号子
- 空间统计建模
燕南路GISer
地理建模
目录背景空间自相关空间权重矩阵全局空间自相关局部空间自相关空间计量模型空间滞后与空间误差地理加权回归显著性检验背景源于:地理学第一定律;空间数据具有空间依赖和空间自相关性核心:认识与地理位置相关的数据之间的空间依赖、空间关联或空间自相关;通过空间位置建立数据间的统计关系。运用统计分析法,建立空间统计模型、从数据中挖掘空间自相关与空间变异规律。经典统计方法认为样本独立假设;而空间数据并非完全独立,具
- 【深度学习每日小知识】NLP 自然语言处理
jcfszxc
深度学习术语表专栏深度学习自然语言处理人工智能
自然语言处理(NLP)是人工智能(AI)的一个子领域,处理计算机和人类(自然)语言之间的交互。它涉及使用算法和统计模型使计算机能够理解、解释和生成人类语言。NLP是人工智能领域的重要工具,广泛应用于语言翻译、文本分类和聊天机器人等领域。在NLP中,存在许多重大困难,例如句法歧义、语义歧义和上下文歧义。句法歧义描述的是相同的单词根据上下文和句子结构可能表示不同的事物的情况。根据使用上下文的不同,单词
- AI量化交易案例
人工智能MOS
人工智能机器学习深度学习
量化交易案例介绍1.1案例说明机器学习与人工智能在金融领域已有成熟的应用。用统计模型来预测股票等金融产品的价格并自动交易,这是其中的经典问题。价格预测的模型是这个应用场景中的核心问题,在预测价格变化的基础上,通过一定的交易规则来获利。价格预测的准确率不需要很高,超过50%在理论上就有盈利的空间。每次交易的获利也不需要太高,只要高于交易成本,就能通过长期、多次的交易来积累盈利,形成显著的收益。本案例
- Topic 4. 临床预测模型构建 Logistic 回归
90066456ace6
上期我们已经基本了解变量的类型,以及如果处理不同种类的变量,现在我们就来学些一个临床预测模型--GLM广义线性模型及R语言实现。广义线性模型(GeneralizedLinearModel)是一般线性模型的推广,它使因变量的总体均值通过一个非线性连接函数而依赖于线性预测值,允许响应概率分布为指数分布族中的任何一员。许多广泛应用的统计模型都属于广义线性模型,如常用于研究二元分类响应变量的Logisti
- DALS020-距离与降维
backup备份
title:DALS020-距离与降维date:2019-08-2012:0:00type:"tags"tags:降维分析Bierachicalcategories:DataAnalysisforthelifesciences前言这一部分是《DataAnalysisforthelifesciences》的第8章统计模型的第1小节,这一部分的主要内容涉及降维分析的一些原理,例如SVD,投影,旋转等,
- 关于单倍型和Phasing
生物信息与育种
单倍型,即单倍体基因型,概念很好理解。image.png单倍型分型的过程就称之Phasing,定相或基因分型。Phasing的意义,在人类疾病遗传和动植物群体遗传中非常重要。也是imputation的必经过程。vcf文件中,./.和.|.分别表示未定相和已定相。Phasing的方法:家系定相,最准确,一般根据一家三口(Trio样本)推断,直接简单;LD定相,最常用,根据群体LDblock和统计模型
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod