- Gauss列主元素消去法-C++【可直接复制粘贴/欢迎评论点赞】
月白风清江有声
c++算法开发语言
Gauss列主元素消去法(也称为列主元Gauss消去法)是Gauss消去法的一种改进版本,主要用于求解线性方程组。在C++中实现时,它具有一些显著的优点和缺点,并且有着深厚的数学和计算背景。优点提高数值稳定性:列主元Gauss消去法通过在每一列中选择绝对值最大的元素作为主元,从而避免了在消元过程中使用过小或接近零的主元,这有助于提高计算的数值稳定性和精度。减少误差累积:由于选择了较大的主元进行消元
- 线性代数 第五讲:线性方程组_齐次线性方程组_非齐次线性方程组_公共解同解方程组_详解
小徐要考研
线性代数线性代数线性方程组机器学习
线性方程组文章目录线性方程组1.齐次线性方程组的求解1.1核心要义1.2基础解系与线性无关的解向量的个数1.3计算使用举例2.非齐次线性方程的求解2.1非齐次线性方程解的判定2.2非齐次线性方程解的结构2.3计算使用举例3.公共解与同解3.1两个方程组的公共解3.2同解方程组4.方程组的应用5.重难点题型总结5.1抽象齐次线性方程组的求解5.1含有系数的非齐次线性方程组的求解及有条件求全部解问题5
- LU分解算法(串行、并行)
清榎
高性能计算并行程序高性能计算数值分析
一、串行LU分解算法(详细见MIT线性代数)1.LU分解矩阵分解LU分解分解形式L(下三角矩阵)、U(上三角矩阵)目的提高计算效率前提(1)矩阵A为方阵;(2)矩阵可逆(满秩矩阵);(3)消元过程中没有0主元出现,也就是消元过程中不能出现行交换的初等变换LU分解其实就是将线性方程组:Ax=bAx=bAx=b分解为:LUx=bLUx=bLUx=b这样一来就会有:{Ly=bUx=y\begin{cas
- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- 东南大学研究生-数值分析上机题(2023)Python 3 线性代数方程组数值解法
天空的蓝耀
python线性代数
列主元Gauss消去法3.1题目对于某电路的分析,归结为就求解线性方程组RI=V\pmb{RI=V}RI=V,其中R=[31−13000−10000−1335−90−1100000−931−100000000−1079−30000−9000−3057−70−500000−747−300000000−3041000000−50027−2000−9000−229]\pmb{R}=\begin{bmat
- 数学基础 -- 线性代数之矩阵的秩
sz66cm
线性代数矩阵机器学习
矩阵的秩:概念与应用1.概述矩阵的秩(Rank)是线性代数中的一个基本概念,它衡量了矩阵中行或列向量的线性无关性。矩阵的秩在解线性方程组、矩阵分解、确定线性变换的维度等方面起着重要作用。2.矩阵的秩的定义矩阵的秩可以从以下几个角度进行定义:行秩:矩阵的行秩是指矩阵中最大线性无关行向量的个数。列秩:矩阵的列秩是指矩阵中最大线性无关列向量的个数。在一个矩阵中,行秩和列秩总是相等的,因此我们通常将矩阵的
- 数学基础 -- 线性代数之行阶梯形
sz66cm
线性代数机器学习人工智能
行阶梯形行阶梯形(RowEchelonForm,REF)是线性代数中用于简化矩阵形式的一种方法,常用于求解线性方程组。矩阵经过行变换(如高斯消元法)后可以转换为行阶梯形,它具有以下特点:行阶梯形的定义零行在矩阵的底部:矩阵中如果存在一行全为零的行,这些行必须在矩阵的最下方。每一非零行的首个非零元素为1:这一元素称为该行的主元(leadingentry)。主元是从左到右的第一个非零元素,并且主元必须
- 数学基础 -- 线性代数之增广矩阵
sz66cm
线性代数机器学习
增广矩阵增广矩阵(AugmentedMatrix)是在求解线性方程组时常用的工具。它将线性方程组的系数矩阵与常数项合并在一起,形成一个扩展的矩阵,从而便于使用矩阵操作方法求解方程组。定义假设我们有一个线性方程组:a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2⋮am1x1+am2x2+⋯+amnxn=bm\begin{aligned}a_{11}x_1+a_
- c语言专属英语单词,C语言 V 编程英语单词.doc
时间还早
c语言专属英语单词
编程词汇英汉对照DataStructures基本数据结构Dictionaries字典PriorityQueues堆GraphDataStructures图SetDataStructures集合Kd-Trees线段树NumericalProblems数值问题SolvingLinearEquations线性方程组BandwidthReduction带宽压缩MatrixMultiplication矩阵乘
- 线性方程组
不倒的不倒翁先森
线性代数线性代数机器学习
文章目录线性方程组等价方程组严格三角形方程组方程组的矩阵主行,主元消元失败线性方程组若线性方程组相容,则此方程组有1个或无穷多个解;若线性方程组不相容,则该方程组无解。线性方程组所有解的集合被称为线性方程组的解集;若线性方程组不相容,则解集为空集。等价方程组若两个含有相同变量的方程组具有相同的解集,则称它们是等价的。有三种运算可以得到等价的方程组:交换任意两个方程的顺序;任一方程两边同乘一个非零的
- 【matlab】基本操作(二)实验报告
Linyeji
数学建模matlab
实验目的与要求:1熟悉matlab工作环境2掌握建立矩阵的方法和基本的矩阵运算3掌握matlab各种表达式的书写规则以及常用函数的使用4用矩阵求逆法解线性方程组实验内容:P3601,3,4P3624,5(1)一、先求下列表达式的值。提示:利用冒号表达式生成向量。二、设有矩阵A和B求它们的乘积C。求A+A、A*A、A^2。求B+1、B-1、B-C、B.*3、B.^2、B./2。(4)取A矩阵的最后一
- 解线性方程组(一)——克拉默法则求解(C++)
龙行泽雨
计算方法c++线性代数
克拉默法则解线性方程组最基础的方法就是使用克拉默法则,需要注意的是,该方程组必须是线性方程组。假设有方程组如下:{a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2⋯⋯⋯an1x1+an2x2+⋯+annxn=bn\begin{cases}a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1\\a_{21}x_1+a_{22}x_2
- 欠定方程组及其求解
superdont
计算机视觉入门计算机视觉opencv人工智能python矩阵
欠定方程组是指方程的数量少于未知数的数量的方程组。在这种情况下,通常有无限多个解,因为给定的方程不足以唯一确定所有未知数的值。在某些情况下,我们可以利用额外的信息或假设,如稀疏性或其他约束,来找到一个合理的解。例子举个简单的欠定方程组的例子:设有下面的两个线性方程组,描述两条直线,在二维空间中搜索交点(即x和y的值):2x+3y=54x+6y=10显然,这个方程组是欠定的,因为第二个方程只是第一个
- 非线性方程组求解
陨星落云
非线性方程组求解fsolve()可以对非线性方程组进行求解,它的基本调用形式为fsolve(func,x0)。其中func是计算方程组误差的函数,它的参数x是一个数组,其值为方程组的一组可能的解。func返回将x代入方程组之后得到的每个方程的误差,x0为未知数的一组初始值。假设要对下而的方程组进行求解:f1(u1,u2,u3)=0,f2(u1,u2,u3)=0,f3(u1,u2,u3)=0那么fu
- python求解非线性多元方程_python用fsolve、leastsq对非线性方程组求解
weixin_39954908
python求解非线性多元方程
背景:实现用python的optimize库的fsolve对非线性方程组进行求解。可以看到这一个问题实际上还是一个优化问题,也可以用之前拟合函数的leastsq求解。下面用这两个方法进行对比:代码:fromscipy.optimizeimportfsolve,leastsqfrommathimportsin,cosdeff(x):x0=float(x[0])x1=float(x[1])x2=flo
- python fsolve说明_python用fsolve、leastsq对非线性方程组求解
卖腿毛养你啊
pythonfsolve说明
背景:实现用python的optimize库的fsolve对非线性方程组进行求解。可以看到这一个问题实际上还是一个优化问题,也可以用之前拟合函数的leastsq求解。下面用这两个方法进行对比:代码:fromscipy.optimizeimportfsolve,leastsqfrommathimportsin,cosdeff(x):x0=float(x[0])x1=float(x[1])x2=flo
- 矩阵在计算机图像处理中的应用,英语翻译在实际应用中,矩阵不仅对于我们求解线性方程组提供了很好的方法,还在计算机等领域得到了广泛的应用:数字图像处理,人...
光露
矩阵在计算机图像处理中的应用
共回答了21个问题采纳率:100%Inpracticalapplication,thematrisisnotonlyprovideagoodmethodforustosolvelinearsimultaneousequations,butalsoputintowidelyuseincomputerfield:digitalimageprosessing,ArtificialIntelligence
- [数学]高斯消元
Waldeinsamkeit41
算法数据结构
介绍用处:求解线性方程组加减消元法和代入消元法这里引用了高斯消元解线性方程组----C++实现_c++用高斯消元法解线性方程组-CSDN博客改成了自己常用的形式:intgauss(){intc,r;//column,rowfor(c=1,r=1;cfabs(a[maxx][c]))maxx=i;if(fabs(a[maxx][c])=c;i--)a[r][i]/=a[r][c];//把现在的第r行
- 1.几种简单矩阵计算的Fortran实现
xk6891
Fortran坐标变换
为了实现分子按照特定方向转向,参考之前利用VESTA手动截取晶面并采用矩阵计算转向的方法,用fortran编写了一个实现简单矩阵计算功能的小程序,用于处理矩阵加、减、乘、除、行列式值、求逆、转置几类计算,主要是求逆和除法的实现。求逆采用了初等变换和利用伴随矩阵两种方法,但编译好的应当时默认利用伴随矩阵方法。缺点:计算种类简单,后续应参考“云算子”增加“线性方程组、特征值和特征向量、Cholesky
- 非线性方程组牛顿迭代法matlab,matlab实现牛顿迭代法求解非线性方程组
weixin_39746282
《matlab实现牛顿迭代法求解非线性方程组》由会员分享,可在线阅读,更多相关《matlab实现牛顿迭代法求解非线性方程组(5页珍藏版)》请在人人文库网上搜索。1、matlab实现牛顿迭代法求解非线性方程组已知非线性方程组如下3*x1-cos(x2*x3)-1/2=0x12-81*(x2+0.1)2+sin(x3)+1.06=0exp(-x1*x2)+20*x3+(10*pi-3)/3=0求解要求
- 数学实验第三版(主编:李继成 赵小艳)课后练习答案(六)(2)
C.L.L
matlab
目录实验六:矩阵特征值与迭代法练习二实验六:矩阵特征值与迭代法练习二1.已知线性方程组Ax=b,其中A是50×50如下形式的矩阵b为任意的非零向量。按要求完成下面的实验任务:(1)方程组Ax=b是否有解与右边常向量b是否有关?无关。不论右边的常量为何值该方程组均有解。(该方阵为满秩方阵)(2)对此方程组,雅可比和高斯-赛德尔迭代法是否收敛?若收敛,则任意取定一个非零向量b,分别用雅可比和高斯-赛德
- 线性代数的本质6-逆矩阵、列空间与零空间
Qn_351c
线性方程组:在每一个方程中,所有的未知量(x,y,z等)只具有常系数;未知量之间只进行加减,没有幂次与未知量之间等乘积等;未知量放在等号的左边,剩余常数项放在等号右边;最好将同一个未知量竖直对齐,在某个未知量不出现时,加入0这个系数。可以将方程组所有方程合并成一个向量方程:这个向量矩阵有一个包含所有常数系数的矩阵A;一个包含所有未知数的向量x;和它们乘积所得到的一个常数向量v;矩阵A代表一种线性变
- 高斯消去法 | LU分解 | PA=LU分解(MatLab)
_宁清
计算方法(数值分析)实验课matlab数据结构算法高斯消去法LU分解PA=LU分解
一、问题描述利用高斯消去法,LU分解及PA=LU分解求解非线性方程组。二、实验目的掌握高斯消去法、LU分解、PA=LU分解的算法原理;编写代码实现利用高斯消去法、LU分解、PA=LU分解来求解线性方程组。三、实验内容及要求1.利用顺序高斯消去法求解如下方程组。(注意将顺序高斯消去法封装为一个函数,函数名Gauss,该函数对应的文件同样命名为Gauss)。functionx=Gauss(A,b)n=
- 通过编程来学习线性代数1-解二元线性方程组
tomfriwel
cover环境采用的编程方式是网页,会使用javascript来实现线性代数中的计算方法。比如文件linearAlgebra.html://在控制台打印console.log(123*2)写入上面的代码,保存后用浏览器打开,然后右键打开审查元素点击控制台(Console)来查看输出。更多网页相关知识网上可以搜得到,掌握基本javascript编程知识就行了。解二元线性方程组行列式的概念是由解多元线
- 线性代数:线性方程组
山楂树の
线性代数线性代数
目录一、线性方程组概念二、消元法求线性方程组三、系数阵的秩与线性方程组的解无解唯一解无数解相关定理一、线性方程组概念二、消元法求线性方程组三、系数阵的秩与线性方程组的解无解唯一解无数解相关定理
- AcWing.883.高斯消元解线性方程组
Die love 6-feet-under
算法c++笔记
输入一个包含n个方程n个未知数的线性方程组。方程组中的系数为实数。求解这个方程组。下图为一个包含m个方程n个未知数的线性方程组示例:输入格式第一行包含整数nnn。接下来nnn行,每行包含n+1n+1n+1个实数,表示一个方程的nnn个系数以及等号右侧的常数。输出格式如果给定线性方程组存在唯一解,则输出共nnn行,其中第iii行输出第iii个未知数的解,结果保留两位小数。注意:本题有SPJ,当输出结
- C++ 数论相关题目:高斯消元解异或线性方程组
伏城无嗔
数论力扣算法笔记c++算法
输入一个包含n个方程n个未知数的异或线性方程组。方程组中的系数和常数为0或1,每个未知数的取值也为0或1。求解这个方程组。异或线性方程组示例如下:M[1][1]x[1]^M[1][2]x[2]^…^M[1][n]x[n]=B[1]M[2][1]x[1]^M[2][2]x[2]^…^M[2][n]x[n]=B[2]…M[n][1]x[1]^M[n][2]x[2]^…^M[n][n]x[n]=B[n]
- 线性代数笔记4.4(二)非齐次线性方程组解的结构
被遗忘在角落的死小孩
线性代数笔记c++容器开发语言
4.4非齐次线性方程组解的结构导出组首先Ax=b是一个非齐次线性方程组,若Ax=0,则叫这个齐次方程组为导出组性质若a1,a2是Ax=b的解,则a1-a2是Ax=0的解,即非齐次方程组的解相减得到齐次方程组的解非齐次线性方程组的解与导出组的解相加以后,还是非齐次方程组的解非齐次线性方程组解的结构非齐次线性方程组的解:等于一个Ax=b的一个特解+Ax=0的基本线性组合求非齐次线性方程组的解就转换为:
- 数值计算方法
POP-2000
第一章绪论1.1数值计算方法的研究对象和特点1.计算机解决科学计算问题的一般过程可概括为:实际问题->数学模型->计算方法->程序设计->上机计算。2.对算法所要考虑的问题:a.计算速度:eg:求解一个20阶线性方程组,用克莱姆法则要进行9.71020次运算,如用每秒1亿次乘法运算的计算机要30万年;而用加减消元法需3000次乘法运算.b.存储量c.数值稳定性3.数值计算方法的特点面向计算机,算
- 牛顿迭代法例题 matlab,牛顿迭代法-matlab程序(解线性方程组)
nfs king
牛顿迭代法例题matlab
牛顿迭代法matlab程序(解线性方程组)作者:佚名来源:转载发布时间:2009-3-716:55:53减小字体增大字体1.功能本程序采用牛顿法,求实系数高次代数方程f(x)=a0xn+a1xn-1+…+an-1x+an=0(an≠0)(1)的在初始值x0附近的一个根。2.使用说明(1)函数语句Y=NEWTON_1(A,N,X0,NN,EPS1)调用M文件newton_1.m。(2)参数说明An+
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟