基础数论

大数取模

       ll ans=0;
       for(int i=0; i

快速幂

  • 计算一个数的次幂即
    快速幂的思想就是将指数转化成二进制再进行求解

  • 其中指数,所以我们可以求出按照循环要循环次,现在只要计算次,所以快速幂的时间复杂度是
long long power(int a,int n)
{
   long long ans=1;
   long long base=a;
   while(n)
   {
       if(n&1)
       {
           ans=ans*base;
       }
       base=base*base;
       n>>=1;
   }
   return ans;
}

欧几里得

  • 求最大公约数
long long gcd(long long a,long long b)
{
   if(b==0)
   {
       return a;
   }
   else
   {
       return gcd(b,a%b);
   }
}
  • 最小公倍数

扩展欧几里得

  • 对于不完全为 的非负整数 表示 的最大公约数,必然存在整数对 , 使得 .

证明

  • ①: 立即推
    ②:


    已知: (欧几里得)
    立即推



    可得: ;
define ll long long
void exgcd(ll a,ll b,ll &gcd,ll &x,ll &y)
{
     if(b==0)
     {
           x=1;
           y=0;
           gcd=a;
     }
     else
     {
           exgcd(b,a%b,gcd,y,x);
           y-=x*(a/b);
     }
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
     if(b==0)
     {
           x=1;
           y=0;
           return a;
     }      
     ll r = exgcd(b,a%b,y,x);
     y-=x*(a/b);
     return r;
}

逆元

  • 对于正整数,如果有
    (即),那么把这个同余方程中的最小正整数解叫做模的逆元。

  • 逆元用途
    如何求解,取模运算中
    在这种情况下就要求在模的情况下的逆元了
    即,
    然后

  • 逆元求法
    ①.费马小定理
    假如是一个质数且那么
    因为根据费马小定理可知

    所以
    ②.扩展欧几里得算法
    扩展欧几里得(互质 ,且不是质数时也可使用)
    求解
    解出的最小正整数解叫做模的逆元。

ll inv ( ll a , ll b )
{
   ll gcd, x, y;
   exgcd(a, b, gcd, x, y);
   return gcd == 1 ? ( x % b + b ) % b : -1 ;   // x 可能为负数
}

中国剩余定理

其中两两互质的整数

结论:


其中


#include
#include
#include
#include
#define ll long long
using namespace std;
const int mm=1e6+10;
ll c[mm],mod[mm];
ll exgcd(ll a,ll b,ll &gcd,ll &x,ll &y)
{
   if(b==0)
   {
       x=1;
       y=0;
       gcd=a;
   }
   else
   {
       exgcd(b,a%b,gcd,y,x);
       y-=x*(a/b);
   }
}
ll inv(ll a,ll b)
{
   ll gcd,x,y;
   exgcd(a,b,gcd,x,y);
   return gcd==1?(x%b+b)%b:-1;
}
int main( )
{
   int n;
   while(~scanf("%d",&n))
   {

       ll ans=1;
       for(int i=1; i<=n; i++)
       {
           scanf("%lld%lld",&mod[i],&c[i]);
           ans*=mod[i];
       }
       ll sum=0;
       for(int i=1; i<=n; i++)
       {
           ll a=ans/mod[i]; ll b=mod[i];
           sum=(sum+c[i]*a*inv(a,b)%ans)%ans;
       }
       printf("%lld\n",sum);
   }
   return 0;
}

扩展中国剩余定理

其中两两不一定互质的整数





根据扩展欧几里得算法求解,满足


实际上有多组解

取的最小整数解,

最后合成

void exgcd(ll a,ll b,ll &gcd,ll &x,ll &y)
{
   if(b==0)
   {
       x=1;
       y=0;
       gcd=a;
   }
   else
   {
       exgcd(b,a%b,gcd,y,x);
       y-=x*(a/b);
   }
}
ll mul(ll a,ll n,ll m)//快速乘
{
   ll ans=0;
   ll base=a;
   while(n)
   {
       if(n&1)
       {
           ans=(ans+base)%m;
       }
       base=(base+base)%m;
       n>>=1;
   }
   return ans%m;
}
ll excrt(int n)
{
   ll x,y,gcd;
   ll M=1,ans=0;//k数组是被模数,mod数组是模数,k%mod
   for(int i=1;i<=n;i++)
   {
       ll a=M;
       ll b=mod[i];
       ll c=(k[i]-ans%b+b)%b;
       exgcd(a,b,gcd,x,y);
       if(c%gcd!=0)
       {
           return -1;
       }
       ll t=b/gcd;
       x=mul(x,c/gcd,t);
       ans+=x*M;//更新前i个方程组的答案
       M*=t;//前i个modi的小公倍数
       ans=(ans%M+M)%M;
   }
   return (ans%M+M)%M;
}

P4777 【模板】扩展中国剩余定理(EXCRT)

#include
#include
#include
#include
#define ll long long
using namespace std;
const int MAX=1e5+10;
ll k[MAX],mod[MAX];//mod数组是模数,k数组是被模数-->>k%mod
void exgcd(ll a,ll b,ll &gcd,ll &x,ll &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        gcd=a;
    }
    else
    {
        exgcd(b,a%b,gcd,y,x);
        y-=x*(a/b);
    }
}
ll mul(ll a,ll n,ll m)
{
    ll ans=0;
    ll base=a;
    while(n)
    {
        if(n&1)
        {
            ans=(ans+base)%m;
        }
        base=(base+base)%m;
        n>>=1;
    }
    return ans%m;
}
ll excrt(int n)
{
    ll x,y,gcd;
    ll M=1,ans=0;
    for(int i=1; i<=n; i++)
    {
        ll a=M;
        ll b=mod[i];
        ll c=(k[i]-ans%b+b)%b;
        exgcd(a,b,gcd,x,y);
        if(c%gcd!=0)
        {
            return -1;
        }
        ll t=b/gcd;
        x=mul(x,c/gcd,t);
        ans+=x*M;
        M*=t;
        ans=(ans%M+M)%M;
    }
    return (ans%M+M)%M;
}
int main( )
{
    int n;
    while(~scanf("%d",&n))
    {

        for(int i=1; i<=n; i++)
        {
            scanf("%lld%lld",&mod[i],&k[i]);
        }
        printf("%lld\n",excrt(n));
    }
    return 0;
}

你可能感兴趣的:(基础数论)