Codeforces13C–Sequence(区间DP)

题目大意

给定一个含有N个数的序列,要求你对一些数减掉或者加上某个值,使得序列变为非递减的,问你加减的值的总和最少是多少?

题解

一个很显然的结果就是,变化后的每一个值肯定是等于原来序列的某个值,因为只需要变为非递减的,所以对于某个数要么不变,要么变成左右附件的某个值。这样我们就可以根据前述条件得出DP方程了:dp[i][j]=min(dp[i][j-1],dp[i-1][j]+|a[i]-b[j]|)(a为原序列,b为排序后的序列),方程的意思是,把序列前i个数变为非递减序列并且以不超过b[j]的值结尾的最小花费,那么它要么是以不超过b[j-1]结尾的最小花费,或者是刚好以b[j]结尾的最小花费

代码

第一次提交没用long long呵呵了一次

#include <algorithm>

#include <cstdio>

#include <cstring>

#include <cmath>

#include <cstdlib>

using namespace std;

#define MAXN 5005

#define  INF 0x3f3f3f3f

typedef long long LL;

LL dp[MAXN],a[MAXN],b[MAXN];

int main()

{

    int n;

    scanf("%d",&n);

    for(int i=1;i<=n;i++) scanf("%I64d",&a[i]),b[i]=a[i];

    sort(b+1,b+n+1);

    for(int i=1;i<=n;i++)

        for(int j=1;j<=n;j++)

        {

            if(j==1)dp[j]+=abs(a[i]-b[j]);

            else

                dp[j]=min(dp[j-1],dp[j]+abs(a[i]-b[j]));

        }

        printf("%I64d\n",dp[n]);

        return 0;

}

你可能感兴趣的:(codeforces)