- 复合Simpson求积算法-C++【可直接复制粘贴/欢迎评论点赞】
月白风清江有声
算法人工智能
背景复合Simpson求积算法是基于Simpson1/3法则的推广。Simpson1/3法则是一种数值积分方法,它通过将积分区间划分为多个小区间,并在每个小区间上采用一个二次多项式来逼近原函数,进而求得积分的近似值。复合Simpson求积算法则是将这种方法应用于整个积分区间,即将整个区间划分为多个小区间,并在每个小区间上分别应用Simpson1/3法则进行积分计算,最后将各小区间的积分结果相加得到
- 数学运用 -- 使用最小二乘与勒让德多项式拟合离散数据
sz66cm
线性代数矩阵机器学习
使用最小二乘与勒让德多项式拟合离散数据1.准备离散数据假设我们有以下离散数据集:xxxyyy0.01.00.50.81.00.51.50.22.0-0.1我们想用勒让德多项式拟合这些数据,并通过最小二乘法找到勒让德多项式的系数。2.勒让德多项式勒让德多项式的前几项为:P0(x)=1P_0(x)=1P0(x)=1P1(x)=xP_1(x)=xP1(x)=xP2(x)=12(3x2−1)P_2(x)=
- 数学基础 -- 线性代数正交多项式之勒让德多项式展开推导
sz66cm
线性代数决策树算法
勒让德多项式展开的详细过程勒让德多项式是一类在区间[−1,1][-1,1][−1,1]上正交的多项式,可以用来逼近函数。我们可以将一个函数表示为勒让德多项式的线性组合。以下是如何推导勒让德多项式展开系数ana_nan的详细过程。1.勒让德展开的基本假设给定一个函数f(x)f(x)f(x),我们希望将它表示为勒让德多项式的线性组合:f(x)=∑n=0∞anPn(x),f(x)=\sum_{n=0}^
- 线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则
取个名字真难呐
算法机器学习矩阵人工智能线性代数
文章目录1.ImageNet2.卷积计算2.1两个多项式卷积2.2函数卷积2.3循环卷积3.周期循环矩阵和非周期循环矩阵4.循环卷积特征值4.1卷积计算的分解4.2运算量4.3二维卷积公式5.KroneckerProduct1.ImageNetImageNet的论文paper链接如下:详细请直接阅读相关论文即可通过网盘分享的文件:imagenet_cvpr09.pdf链接:https://pan.
- 一个符号求导的小程序
flowesy
随笔实验
这两天写了一个符号求导的程序,没有任何化简,代码质量比较差。以后可以考虑把每个项coefficient*x^index单独提出来,把coefficient和index单独作为未知数x的属性。该程序目前只支持多项式求导。#includeusingnamespacestd;conststaticintbign=10033;enumtokenType{Openbracket=1,CloseBracket
- 01-30
姬汉斯
今天看的是关于文档识别和分类的处理案例。利用多项式贝叶斯公式计算TF-IDF值,以此计算出文档中的词频,文档频率等数据属性,TFIDFVectorizer类用于进行整理,NTLK包进行标注处理,计算文档中各个字符的权重,通过分类器进行分类处理。Sklearn在其中依然有巨大作用,还在熟悉其特性
- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 数学建模-插值算法原理笔记
Faye_C_66
数学建模数学建模
文章目录目的概念分类一般插值多项式拉格朗日插值法分段线性插值分段二次插值牛顿插值法埃尔米特插值原理分段三次埃米尔特插值三次样条插值这里是根据清风数学建模视频课程记录的笔记,我不是清风本人。想系统学习数学建模的可以移步B站搜索相关视频目的比赛中常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就可以使用一些方法“模拟产生”一些新的但又比较靠谱的
- 第四讲:拟合算法
云 无 心 以 出 岫
数学建模数学建模算法
与插值问题不同,在拟合问题中不需要曲线一定经过给定的点。拟合问题的目标是寻求一个函数(曲线)使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(最小化损失函数)。插值算法中,得到的多项式f(x)要经过所有样本点。但是如果样本点太多,那么这个多项式次数过高,会造成龙格现象。尽管我们可以选择分段的方法避免这种现象,但是更多时候我们更倾向于得到-个确定的曲线,尽管这条曲线不能经过每一个样本点
- 有关区块链的一些数学知识储备
fc&&fl
考研学习
1.集合集合是由不同对象组成的整体(collectionsofobjects)的数学模型,这些对象被称为集合的元素(elements)。整数(Integers)、有理数(Rationalnumbers)、实数(Realnumbers)、复数(Complexnumbers)、矩阵(Matrices)、多项式(Polynomials)、多边形(Polygons)以及其他的很多概念实质上都是集合。常用集
- python奇数平方和_平方和
weixin_39807352
python奇数平方和
平方和误差和最大后验2020-12-2119:32:19多项式曲线拟合问题中的最大后验与最小化正则和平方和误差之间的关系简单证明多项式回归的最大后验等价于最小正则化和平方和误差;主要内容:多项式回归高斯分布贝叶斯定理对数函数计算1.简单回顾一下多项式回归y组合模型方法2020-12-0813:01:57不同的定性预测模型方法或定量预测模型方法各有其优点和缺点,它们之间并不是相互排斥的,而是相互联系
- PAT1010 一元多项式求导
Nemeorum
算法pat考试java
设计函数求一元多项式的导数。(注:xn(n为整数)的一阶导数为nxn−1。)输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。注意“零多项式”的指数和系数都是0,但是表示为00。输入样例:34-5261-20输出样例:123-10160个人题解
- 请编写函数fun,其功能是:计算并输出下列多项式的值,S=(1-1/2)+(1/3-1/4)+…+(1/(2n-1)-1/2n),要求n的值大于1但不大于100
Charlotte_yu
算法c语言
#includedoublefun(intn){doubler=0,x=0,sum=0;doublei;if(n>1&&n<=100){for(i=1;i<=n;i++){r=1/(2*i-1);x=1/(2*i);sum+=(r-x);}}returnsum;}main(){intn;doubles;voidNONO();printf("\nInputn:");scanf("%d",&n);s=
- 高等代数理论基础9:复系数与实系数多项式
溺于恐
复系数与实系数多项式代数基本定理定理:每个次数的复系数多项式在复数域中有一根等价叙述:每个次数的复系数多项式,在复数域上一定有一个一次因式注:由定理可知复数域上所有次数大于1的多项式全是可约的,即不可约多项式只有一次多项式复系数多项式因式分解定理定理:每个次数的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积复系数多项式具有标准分解式其中是不同的复数,标准分解式说明每个n次复系数多项式恰有n
- 多项式时间和伪多项式时间
曾悦_3b69
参考自:维基百科伪多项式时间在计算机理论领域中,若一个数值算法的时间复杂度可以表示为输入数值的多项式,则称其时间复杂度为“伪多项式时间时间”,这是由于,的值是的位数的幂,故该算法的时间复杂度实际上应视为输入数值的位数的幂(,为在计算机中存储的位数)。举例在素性测试中,使用较小的整数对被测试数进行试除的算法被认为是一个伪多项式时间算法。对于给定的整数,使用从小的素数2开始,到为止的数对N进行试除,如
- 机器学习先导课《数值分析》(1)——绪论及误差分析
WarrenRyan
数值分析——绪论及误差分析数值分析——绪论及误差分析全文目录数值分析的作用及其学习工具使用数值分析常用工具数值分析的具体实例(多项式简化求值)计算机数值误差产生机理计算机的数值存储方式计算机误差产生原因误差误差限与精度模型误差观测误差截断误差舍入误差有效数字缺失误差的产生和避免误差的传播算法设计的稳定性与病态条件病态问题计算的稳定性练习题ReferenceAboutMe联系方式全文目录(博客园)机
- 在数据清洗中,如何处理缺失值?
ShiTuanWang
大数据数据挖掘数据分析
在数据清洗中,处理缺失值的有效方法主要有以下几种:1.删除缺失值:这种方法适用于缺失值数量较少或者对分析任务影响较小的情况。通过删除含有缺失值的记录,可以确保分析的数据是完整的。不过,这种方法可能会导致信息的丢失,尤其是当缺失不是随机发生时,删除可能会引入偏差。2.插值法:插值法适用于连续型数据的缺失值填充,它通过已知数据点的信息来估计未知点的值。例如,可以使用线性插值、多项式插值或更复杂的统计模
- 牛客竞赛数据结构专题班树状数组、线段树练习题
Landing_on_Mars
#线段树数据结构算法
牛客竞赛_ACM/NOI/CSP/CCPC/ICPC算法编程高难度练习赛_牛客竞赛OJG智乃酱的平方数列(线段树,等差数列,多项式)题目描述想必你一定会用线段树维护等差数列吧?让我们来看看它的升级版。请你维护一个长度为5×10^5的数组,一开始数组中每个元素都为0,要求支持以下两个操作:1、区间[l,r]加自然数的平方数组,即al+=1,al+1+=4,al+2+=9,al+3+=16...ar+
- 【Python】使用高斯一勒让德求积(Gauss-Legendre)积分公式进行数值积分
穿着帆布鞋也能走猫步
课程设计成品python
本设计实现了使用Gauss-Legendre积分公式进行数值积分的功能。它通过计算勒让德多项式的零点和权重,并结合被积函数的取值来进行积分的近似计算。通过调整积分节点数n,可以得到更准确的积分近似值。最后,将计算得到的近似值与精确值进行比较,以评估数值积分的准确性。importnumpyasnpimportmatplotlib.pyplotasplt#定义勒让德多项式deflegendre_pol
- 《模式识别与机器学习》第一章
CS_Zero
机器学习人工智能
C1符号含义x\boldxx:向量,曲线拟合问题中的x坐标数值序列。元素个数为N。t\boldtt:向量,曲线拟合问题中的y坐标(target)数值序列。w\boldww:向量,曲线拟合问题中的待估计的参数,即M阶多项式的各阶系数。β\betaβ:标量,协方差的倒数,表示样本的精度。α\alphaα:标量,同上,曲线拟合例子中的先验的精度。多项式曲线拟合E(w)=12∑n=1N{y(xn,w)−t
- 吴恩达机器学习全课程笔记第一篇
亿维数组
MachineLearning机器学习笔记人工智能
目录前言P1-P8监督学习无监督学习P9-P14线性回归模型成本(代价)函数P15-P20梯度下降P21-P24多类特征向量化多元线性回归的梯度下降P25-P30特征缩放检查梯度下降是否收敛学习率的选择特征工程多项式回归前言从今天开始,争取能够在开学之前(2.25)把b站上的【吴恩达机器学习】教程过一遍,并把笔记记录于此,本笔记将会把此课程每一p的重点内容及其截屏记录于此,以供大家参考和本人日后复
- 数据结构与算法题目集|7-2 一元多项式的乘法与加法运算 c++满分题解
Pixeler
pta数据结构与算法题目集c++算法开发语言
设计函数分别求两个一元多项式的乘积与和。输入格式:输入分2行,每行分别先给出多项式非零项的个数,再以指数递降方式输入一个多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。输出格式:输出分2行,分别以指数递降方式输出乘积多项式以及和多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。零多项式应输出00。输入样例:434-5261-203520-7431输出样例
- 【吴恩达·机器学习】第二章:多变量线性回归模型(选择学习率、特征缩放、特征工程、多项式回归)
Yaoyao2024
机器学习线性回归人工智能
博主简介:努力学习的22级计算机科学与技术本科生一枚博主主页:@Yaoyao2024每日一言:勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。——《朗读者》0、声明本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义和自己的理解。在上完课后对课程内容进行回顾和整合,从而加深自己对知识的理解,也方便自己以及后续的同学们复习和回顾。课程地址2022吴恩达
- 中学数学解题05
opcc
有日子没解题了,一直也没人问题,昨天有个学生问了几道题,我们来看一下。是不是有种高大上的赶脚,英语不好的我先默默地补习下单词,有些单词在数学中的意思还是学生在给我讲题的过程中解释的,然而这位同学中文又不好,于是有那么一点点小障碍,还好都是聪明人。polynomial多项式quotient商,商数remainder余数divide除highestpower最高次幂其他单词就不一一解释了。下面我们来看
- C#,阶乘(Factorials)的递归、非递归、斯特林近似及高效算法与源代码
深度混淆
C#算法演义AlgorithmRecipes算法线性代数阶乘C#
ChristianKramp1阶乘的算法阶乘是基斯顿·卡曼(ChristianKramp,1760~1826)于1808年发明的运算符号,是数学术语。一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。亦即n!=1×2×3×...×(n-1)×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。在多项式、插值等等很多的额计算机
- 洛谷 B2146 Hermite 多项式
126wkw2024
算法c++
-->如果n=0,输出1;如果n=1,输出2x;如果n>1,输出一大串-->输入nx,输出Hermite函数值.
- 基于 Python 和 cvxpy 求解 SOCP 二阶锥规划问题
- Easy
优化python数学建模线性代数自动驾驶机器人
cvxpy:Python功能包,为凸优化提供方便使用的用户接口,适配多种求解器SOCP:Second-OrderConeProgramming,二阶锥规划convexoptimization-凸优化,nonlinearoptimization-非线性优化timecomplexity-时间复杂度,polynomial-time-多项式时间Euclideannorm-欧几里德范数文章目录什么是SOCP
- Cayley-Hamilton定理(凯莱-哈密顿定理)
啵啵啵啵哲
数学笔记线性代数
1.定义(1)符号定义单位矩阵为III,矩阵AAA的行列式记作det(A)\det\left(A\right)det(A),伴随矩阵记作adj(A)\mathrm{adj}\left(A\right)adj(A).(2)特征多项式矩阵AAA的特征多项式定义为:χA(s)≜det(sI−A)=sn+d1sn−1+⋯+dn,\chi_A\left(s\right)\triangleq\det\le
- 21丨朴素贝叶斯分类(下):如何对文档进行分类?
张九日zx
朴素贝叶斯分类最适合的场景就是文本分类、情感分析和垃圾邮件识别。sklearn机器学习包sklearn的全称叫Scikit-learn,它给我们提供了3个朴素贝叶斯分类算法,分别是高斯朴素贝叶斯(GaussianNB)、多项式朴素贝叶斯(MultinomialNB)和伯努利朴素贝叶斯(BernoulliNB)。自然界的现象比较适合用高斯朴素贝叶斯来处理,而文本分类是使用多项式朴素贝叶斯或者伯努利朴
- C#,计算几何,贝塞耳插值(Bessel‘s interpolation)的算法与源代码
深度混淆
C#算法演义AlgorithmRecipesC#计算几何GraphicsRecipes算法几何学c#插值
FriedrichWilhelmBessel1贝塞耳插值(Bessel'sinterpolation)首先要区别于另外一个读音接近的插值算法:贝塞尔插值(Bézier)。(1)读音接近,但不是一个人;(2)一个是多项式(整体)插值,一个是分段插值;(3)一个已经很少用,一个还是应用主力;贝塞耳插值(Bessel'sinterpolation)是一种等距节点插值方法,适用于被插值节点z位于插值区间中
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓