- 强连通分量——tarjan算法缩点
小陈同学_
图论算法图论c++
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 强连通分量-tarjan算法缩点
小陈同学_
算法图论数据结构
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- POJ 2117 Electricity 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:POJ2117Electricity题目描述:给定一张无向图,问删除一个结点后最多会有多少个强连通分量。题解:我们用scc表示初始的图中有多少个强连通分量,该值可以通过DFS计算出来。接下来我们只需要计算出删除每个割点会增加的强连通分量个数cnt即可,答案即为cnt+ans,对于一个强连通分量中的非根结点,用son表示有多少个子结点能够返回到当前结点或者当前结点之前遍历的结点,那么不难发
- POJ 1523 SPF题解 Tarjan 割点
kaiserqzyue
算法题目c++算法图论
题目链接:POJ1523SPF题目描述:给定一张连通的无向图,问哪些结点是割点,分别删除各个割点时会产生几个强连通分量。题解:求割点可以通过Tarjan算法来解决,我们接下来考虑删除一个割点后会产生多少个联通块。在Tarjan算法中,我们判断一个点是否是割点是通过其子结点能否回到遍历过的结点来判断。如果当前遍历的结点存在一个子结点不能够回到已经遍历过的结点,那么当前遍历的结点便是一个割点(这样的依
- Luogu P5058 [ZJOI2004] 嗅探器 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:LuoguP5058[ZJOI2004]嗅探器题目描述:给定一张无向图,以及两个点s,t,你需要找到一个点(这个点不能是s或t),这个点被所有s,t之间的路径所经过。如果不存在这样的点,输出Nosolution。如果有多个这样的点,输出编号最小的。题解:我们很容易发现要删除的点一定是割点(按照题意,删除后,s与t不能进行通信,这说明强连通分量增加了)。我们只需要考虑哪些割点是满足条件的。
- 强连通分量(SCC,Strongly Connected Components)学习笔记 & edited in 2024.01.31
taoyiwei17_HNCS
学习笔记
更新日志upd2024.01.31写好文章基本内容upd2024.01.31发表于洛谷upd2024.02.01同步发表于CSDNupd2024.02.01同步发表于博客园cnblogsupd2024.02.01增加内容difficultPRO例题详解——P2746强连通分量(SCC,StronglyConnectedComponents)定义强连通有向图(DAG)中若其中两点xxx,yyy能彼此
- 强连通分量(dfs version)
yan_qiu_ynlchrz
算法整理算法
定义我们称有向图G=(V,E)G=(V,E)G=(V,E)是强连通的当且仅当对于GGG中任意两点u,vu,vu,v都存在一条uuu到vvv的路径和一条vvv到uuu的路径。如果G′G'G′为GGG的一个子图且G′G'G′是强连通的,则称G′G'G′是一个强连通子图。若G′G'G′满足极大性,则称G′G'G′是一个强连通分量。那么,如果我们将所有的强连通分量都缩成一个点,就可以得到一张DAGDAGD
- 算法竞赛——强连通分量
ThXe
ACM教程图论蓝桥杯ACM蓝桥杯ACM强连通分量
强连通分量强连通的定义是:有向图G强连通是指,G中任意两个结点连通。强连通分量(StronglyConnectedComponents,SCC)的定义是:极大的强连通子图也可以说,在强连图图的基础上加入一些点和路径,使得当前的图不在强连通,称原来的强连通的部分为强连通分量。DFS生成树DFS生成树是根据DFS搜索顺序构成的一颗生成树,形如(自上而下,自左而右):有向图的DFS生成树主要有4种边:树
- 图论 —— 图的连通性 —— Kosaraju 算法
Alex_McAvoy
#图论——图的连通性
【概述】Kosaraju算法是最容易理解,最通用的求强连通分量的算法,其关键的部分是同时应用了原图G和反图GT。【基本思想】1.对原图G进行DFS搜索,计算出各顶点完成搜索的时间f2.计算图的反图GT,对反图也进行DFS搜索,但此处搜索时顶点的访问次序不是按照顶点标号的大小,而是按照各顶点f值由大到小的顺序3.反图DFS所得到的森林即对应连通区域。原图原图进行DFS反图反图进行DFS上面提及原图G
- 图论(三):DFS的应用——拓扑排序与强连通分量
Sunburst7
算法图论
本节介绍如何使用DFS对有向无环图进行拓扑排序,以及求强连通分量的算法。目录一拓扑排序二拓扑排序的实现三强连通分量参考一拓扑排序什么是拓扑排序呢?对于一个有向无环图G=(V,E),拓扑排序是G中所有结点的一种线性次序,满足:如果图G包含边(u,v),则结点u在拓扑排序中处于结点v的前面。拓扑排序可以理解为一系列要处理的事件的先后的顺序。边(u,v)代表完成v必须先完成u。注意的是:如果图G包含环路
- 2.4总结
哥别敲代码了
寒假预备役学习算法学习数据结构
前几天把洛谷有关并查集几个题目都尝试写了一下,自己提前去了解了一下最短路径(Floyed算法)和强连通分量这一方面的内容便于后续学习。连通(顾名思义就是把几个点相连,既可以从a到b,也可以从b到a(无向图))强连通示例图弱连通示例图下面这图里就有着三个强连通分量:把三个分量各自可以看成一个点,进行度的运算最短路径(Floyed算法)在写题的时候总是会遇见这种求最短路径的题,所以提前学习了一下(主要
- 数据结构之图
忆梦九洲
数据结构图无环图与有向无环图按存储路径方向分类按存储结构分类
图图(Graph)是比树还要难以理解和学习的“多对多”数据结构,可以认为树也是图的一种。图的知识点众多,按照存储路径的方向分,可分为无向图和有向图,按照图的存储结构分,可分为完全图与有向完全图、连通图与强连通图、连通分量与强连通分量、无环图与有向无环图,其涉及的算法则包括克鲁斯卡尔算法、普里姆算法、迪杰斯特拉算法和弗洛伊德算法等。如下图所示为图的分类。与表和树相同,图虽然有“多对多”的逻辑关系,但
- Tarjan 算法思想求强连通分量及求割点模板(超详细图解)
harry1213812138
图论算法算法tarjan强连通分量割点割边
割点定义在一个无向图中,如果有一个顶点,删除这个顶点及其相关联的边后,图的连通分量增多,就称该点是割点,该点构成的集合就是割点集合。简单来说就是去掉该点后其所在的连通图不再连通,则该点称为割点。若去掉某条边后,该图不再连通,则该边称为桥或割边。若在图G中(如下图),删除uv这条边后,图的连通分量增多,则u和v点称为割点,uv这条边称为桥或割边。显然,有割点的图不是哈密尔顿图。Tarjan算法求强连
- Tarjan 算法及其应用
Kwjdefulgn
图论基础
Tarjan算法及其应用NO.1求强连通分量学习链接:https://www.cnblogs.com/shadowland/p/5872257.html学习心得:dfn[cur]记录访问cur结点的时间戳,low[cur]记录cur结点及其子树中时间戳最小是多少,严格意义上来讲low[cur],记录的是在不回头遍历父节点的前提下第一次能访问到的最早的已遍历结点的时间戳。显然当访问cur结点的子节点
- Tarjan算法
mrcrack
codeforces
Tarjan算法此文https://www.luogu.com.cn/blog/styx-ferryman/chu-tan-tarjan-suan-fa-qiu-qiang-lian-tong-fen-liang-post介绍不错,摘抄如下“tarjan陪伴强联通分量生成树完成后思路才闪光欧拉跑过的七桥古塘让你心驰神往”----《膜你抄》tarjan是一种求强连通分量、双连通分量的常用算法,其拓展
- Tarjan算法超超超详解(ACM/OI)(强连通分量/缩点)(图论)(C++)
seh_sjlj
OIC/C++算法
本文将持续更新。I前置芝士:深度优先搜索与边的分类首先我们来写一段基本的DFS算法(采用链式前向星存图):boolvis[MAXN];voiddfs(intu){vis[u]=true;for(inte=first[u];e;e=nxt[e]){//遍历连接u的每条边intv=go[e];if(!vis[v])dfs(v);//如果没有访问过就往下继续搜}}这段代码我们再熟悉不过了。接下来我们要引
- Tarjan算法与连通性
流苏贺风
图论算法算法dfs强联通图论
Tarjan算法Tarjan与有向图一、强连通定义二、Tarjan算法求强连通分量2.tarjan的构成要素3.算法的分析4.算法的实现11,未被访问:22,被访问过,已经在栈中:5.算法的代码实物三,缩点四,实际应用Tarjan和无向图一,定义和性质二,割边(桥)和E-DCC11,模板22,实际应用三,割点11,概况22,实现四,V-DCC(点双联通分量)1,求v-dcc2,v-dcc特异性缩点
- 超级详细的Tarjan算法
ivysister
acm题tarjan最大连通分量
有向图强连通分量]在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(stronglyconnectedcomponents)。下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
- 常用图算法实现--Spark
zealscott
使用Spark实现PageRank,强连通分量等图算法PageRank数据准备边:1211523242526273134251151261676871788189810914911011013111211112113141412151网页:123456789101112131415将这两个文件放入HDFS:hdfsdfs-mkdirinput/PageRankhdfsdfs-putlinks.tx
- 算法设计与分析
羊驼冲冲冲
算法学习
目录三个渐进记号分治策略①迭代法②递归树法③主定理法分治的应用堆堆应用动态规划动态规划应用贪心算法贪心算法应用回溯法回溯法应用图图的遍历BFSDFS记录时间戳拓扑排序强连通分量最小生成树流网络NP、P摊还分析三个渐进记号f(n)=O(g(n))其实是代表f(n)∈O(g(n))渐近上界记号OO(g(n))={f(n):存在正常量c和n0,使得对所有n≥n0,有0≤f(n)≤cg(n)}渐近下界记号
- 【C - 班长竞选】
贝耶儿
题意:大学班级选班长,N个同学均可以发表意见若意见为AB则表示A认为B合适,意见具有传递性,即A认为B合适,B认为C合适,则A也认为C合适勤劳的TT收集了M条意见,想要知道最高票数,并给出一份候选人名单,即所有得票最多的同学。思路:从图中找出所有强连通分量进行缩点,那么首先某一个强连通分量中的人获得了该强连通分量中节点数目减一得票数。他们还会获得其他与之相连的强连通分量的票数。计算出每个节点对应的
- Tarjan-vDCC,点双连通分量,点双连通分量缩点
EQUINOX1
数据结构与算法算法c++数据结构职场和发展深度优先
前言双连通分量是无向图中的一个概念,它是指无向图中的一个极大子图,根据限制条件可以分为边双连通分量和点双连通分量,欲了解双连通分量需先了解Tarjan算法,以及割点割边的概念及求解。本篇博客介绍点双连通分量的相关内容。前置知识学习点双连通分量前,你需要先了解:关于Tarjan:SCC-Tarjan算法,强连通分量算法,从dfs到Tarjan详解-CSDN博客关于缩点:SCC-Tarjan,缩点问题
- Tarjan-eDcc,边双连通分量问题,eDcc缩点问题
EQUINOX1
数据结构与算法图论数据结构c++算法
文章目录前言前置知识边双连通分量的定义推论Tarjan算法求解eDcc搜索树强连通分量的根时间戳追溯值算法原理算法流程代码实现eDcc缩点问题OJ详解题目描述原题链接思路分析AC代码前言双连通分量是无向图中的一个概念,它是指无向图中的一个极大子图,根据限制条件可以分为边双连通分量和点双连通分量,欲了解双连通分量需先了解Tarjan算法,以及割点割边的概念及求解。本篇博客介绍边连通分量的相关内容。前
- SCC-Tarjan,缩点问题
EQUINOX1
算法c++数据结构图搜索算法动态规划
文章目录前言引例什么是缩点?缩点的应用一、合并强连通子图为强连通图题目描述输入/输出格式原题链接题目详解二、集合间偏序关系题目描述输入/输出格式原题链接题目详解三、最大点权和路径题目描述输入/输出格式原题链接题目详解其他OJ练习前言图论中的缩点问题通常是指在有向图中,通过将强连通分量内的所有节点缩成一个节点,从而简化图的结构,这个过程称为缩点。这样做可以帮助我们分析和解决一些实际问题。阅读本文前如
- SCC-Tarjan算法,强连通分量算法,从dfs到Tarjan详解
EQUINOX1
数据结构与算法算法深度优先开发语言c++数据结构
文章目录前言定义强连通强连通分量Tarjan算法原理及实现概念引入搜索树有向边的分类强连通分量的根时间戳追溯值算法原理从深搜到TarjanTarjan算法流程Tarjan算法代码实现OJ练习:前言强连通分量是图论中的一个重要概念,它在许多领域都有广泛的应用,如网络路由中识别环路,社交网络分析,编译器优化识别出代码中的循环结构,图像处理中识别出图像中的连通区域,从而进行图像分割和特征提取等。因而了解
- 数据结构—图的定义及基本术语
turbo夏日漱石
数据结构与算法数据结构
目录图的定义图的基本术语(1)子图:(2)无向完全图和有向完全图:(3)稀疏图和稠密图:(4)权和网:(5)邻接点:(6)度、入度和出度:(7)路径和路径长度:(8)回路或环:(9)简单路径、简单回路或简单环:(10)连通、连通图和连通分量:(11)强连通图和强连通分量:(12)连通图的生成树:(13)有向树和生成森林:图的定义图(Graph)G由两个集合V和E组成,记为G=(VE)1、其中V是顶
- 数据结构复盘——第六章:图
时生丶
数据结构数据结构图论
文章目录第一部分:图的一些专业术语1、有向图和无向图2、简单图和多重图3、完全图(也称简单完全图)4、稠密图和稀疏图5、邻接点6、连通,连通图和连通分量7、强连通,强连通图和强连通分量8、路径,路径长度和回路9、简单路径和简单回路10、距离11、生成树和生成森林12、子图13、度,入度和出度14、有向树15、权和网第二部分:图的存储方式1、邻接矩阵2、邻接表3、邻接多重表4、十字链表第二部分习题第
- 【算法每日一练]-图论(保姆级教程篇12 tarjan篇)#POJ3352道路建设 #POJ2553图的底部 #POJ1236校园网络 #缩点
亦歌希望你变强啊
图论算法数据结构c++深度优先
目录POJ3352:道路建设思路:POJ2553:图的底部思路:POJ1236校园网络思路:缩点:思路:POJ3352:道路建设由于道路要维修,维修时候来回都不能走,现要在各个景点间建设新道路以便维修时候也能保证任何两个景点之间可以相互到达,求最少的新道路数量任何一对景点间最多只能在它们之间有一条道路(没有重边)。道路一开始是联通的输入:33122313或101212131425265637387
- 【算法每日一练]-图论(保姆级教程篇11 tarjan模板篇)无向图的桥 #无向图的割点 #有向图的强连通分量
亦歌希望你变强啊
图论图论算法深度优先数据结构c++
目录预备知识模板1:无向图的桥模板2:无向图的割点模板3:有向图的强连通分量讲之前先补充一下必要概念:预备知识无向图的【连通分量】:即极大联通子图,再加入一个节点就不再连通(对于非连通图一定两个以上的连通分量)无向图的【(割边或)桥】:即去掉该边,图就变成了两个连通子图无向图的【割点】:将该点和相关联的边去掉,图将变成两个及以上的子图注意:有割点不一定有桥,但是有桥一定有割点无向图的【边双连通图】
- 2023/5/30---个人总结---Tarjan算法
priority_key
算法
Tarjan算法Tarjan算法是基于深度优先搜索的算法,用于求解图的连通性问题。用途:Tarjan算法可以在线性时间内求出无向图的割点与桥,进一步地可以求解无向图的双连通分量;同时,也可以求解有向图的强连通分量、必经点与必经边。其中需要两个重要的数组low,dfn。dfn:作为这个点搜索的次序编号(时间戳),简单来说就是第几个被搜索到的。low:追溯值---(用来表示从当前节点x作为搜索树的根节
- 多线程编程之理财
周凡杨
java多线程生产者消费者理财
现实生活中,我们一边工作,一边消费,正常情况下会把多余的钱存起来,比如存到余额宝,还可以多挣点钱,现在就有这个情况:我每月可以发工资20000万元 (暂定每月的1号),每月消费5000(租房+生活费)元(暂定每月的1号),其中租金是大头占90%,交房租的方式可以选择(一月一交,两月一交、三月一交),理财:1万元存余额宝一天可以赚1元钱,
- [Zookeeper学习笔记之三]Zookeeper会话超时机制
bit1129
zookeeper
首先,会话超时是由Zookeeper服务端通知客户端会话已经超时,客户端不能自行决定会话已经超时,不过客户端可以通过调用Zookeeper.close()主动的发起会话结束请求,如下的代码输出内容
Created /zoo-739160015
CONNECTEDCONNECTED
.............CONNECTEDCONNECTED
CONNECTEDCLOSEDCLOSED
- SecureCRT快捷键
daizj
secureCRT快捷键
ctrl + a : 移动光标到行首ctrl + e :移动光标到行尾crtl + b: 光标前移1个字符crtl + f: 光标后移1个字符crtl + h : 删除光标之前的一个字符ctrl + d :删除光标之后的一个字符crtl + k :删除光标到行尾所有字符crtl + u : 删除光标至行首所有字符crtl + w: 删除光标至行首
- Java 子类与父类这间的转换
周凡杨
java 父类与子类的转换
最近同事调的一个服务报错,查看后是日期之间转换出的问题。代码里是把 java.sql.Date 类型的对象 强制转换为 java.sql.Timestamp 类型的对象。报java.lang.ClassCastException。
代码:
- 可视化swing界面编辑
朱辉辉33
eclipseswing
今天发现了一个WindowBuilder插件,功能好强大,啊哈哈,从此告别手动编辑swing界面代码,直接像VB那样编辑界面,代码会自动生成。
首先在Eclipse中点击help,选择Install New Software,然后在Work with中输入WindowBui
- web报表工具FineReport常用函数的用法总结(文本函数)
老A不折腾
finereportweb报表工具报表软件java报表
文本函数
CHAR
CHAR(number):根据指定数字返回对应的字符。CHAR函数可将计算机其他类型的数字代码转换为字符。
Number:用于指定字符的数字,介于1Number:用于指定字符的数字,介于165535之间(包括1和65535)。
示例:
CHAR(88)等于“X”。
CHAR(45)等于“-”。
CODE
CODE(text):计算文本串中第一个字
- mysql安装出错
林鹤霄
mysql安装
[root@localhost ~]# rpm -ivh MySQL-server-5.5.24-1.linux2.6.x86_64.rpm Preparing... #####################
- linux下编译libuv
aigo
libuv
下载最新版本的libuv源码,解压后执行:
./autogen.sh
这时会提醒找不到automake命令,通过一下命令执行安装(redhat系用yum,Debian系用apt-get):
# yum -y install automake
# yum -y install libtool
如果提示错误:make: *** No targe
- 中国行政区数据及三级联动菜单
alxw4616
近期做项目需要三级联动菜单,上网查了半天竟然没有发现一个能直接用的!
呵呵,都要自己填数据....我了个去这东西麻烦就麻烦的数据上.
哎,自己没办法动手写吧.
现将这些数据共享出了,以方便大家.嗯,代码也可以直接使用
文件说明
lib\area.sql -- 县及县以上行政区划分代码(截止2013年8月31日)来源:国家统计局 发布时间:2014-01-17 15:0
- 哈夫曼加密文件
百合不是茶
哈夫曼压缩哈夫曼加密二叉树
在上一篇介绍过哈夫曼编码的基础知识,下面就直接介绍使用哈夫曼编码怎么来做文件加密或者压缩与解压的软件,对于新手来是有点难度的,主要还是要理清楚步骤;
加密步骤:
1,统计文件中字节出现的次数,作为权值
2,创建节点和哈夫曼树
3,得到每个子节点01串
4,使用哈夫曼编码表示每个字节
- JDK1.5 Cyclicbarrier实例
bijian1013
javathreadjava多线程Cyclicbarrier
CyclicBarrier类
一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环的 barrier。
CyclicBarrier支持一个可选的 Runnable 命令,
- 九项重要的职业规划
bijian1013
工作学习
一. 学习的步伐不停止 古人说,活到老,学到老。终身学习应该是您的座右铭。 世界在不断变化,每个人都在寻找各自的事业途径。 您只有保证了足够的技能储
- 【Java范型四】范型方法
bit1129
java
范型参数不仅仅可以用于类型的声明上,例如
package com.tom.lang.generics;
import java.util.List;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value =
- 【Hadoop十三】HDFS Java API基本操作
bit1129
hadoop
package com.examples.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoo
- ua实现split字符串分隔
ronin47
lua split
LUA并不象其它许多"大而全"的语言那样,包括很多功能,比如网络通讯、图形界面等。但是LUA可以很容易地被扩展:由宿主语言(通常是C或 C++)提供这些功能,LUA可以使用它们,就像是本来就内置的功能一样。LUA只包括一个精简的核心和最基本的库。这使得LUA体积小、启动速度快,从 而适合嵌入在别的程序里。因此在lua中并没有其他语言那样多的系统函数。习惯了其他语言的字符串分割函
- java-从先序遍历和中序遍历重建二叉树
bylijinnan
java
public class BuildTreePreOrderInOrder {
/**
* Build Binary Tree from PreOrder and InOrder
* _______7______
/ \
__10__ ___2
/ \ /
4
- openfire开发指南《连接和登陆》
开窍的石头
openfire开发指南smack
第一步
官网下载smack.jar包
下载地址:http://www.igniterealtime.org/downloads/index.jsp#smack
第二步
把smack里边的jar导入你新建的java项目中
开始编写smack连接openfire代码
p
- [移动通讯]手机后盖应该按需要能够随时开启
comsci
移动
看到新的手机,很多由金属材质做的外壳,内存和闪存容量越来越大,CPU速度越来越快,对于这些改进,我们非常高兴,也非常欢迎
但是,对于手机的新设计,有几点我们也要注意
第一:手机的后盖应该能够被用户自行取下来,手机的电池的可更换性应该是必须保留的设计,
- 20款国外知名的php开源cms系统
cuiyadll
cms
内容管理系统,简称CMS,是一种简易的发布和管理新闻的程序。用户可以在后端管理系统中发布,编辑和删除文章,即使您不需要懂得HTML和其他脚本语言,这就是CMS的优点。
在这里我决定介绍20款目前国外市面上最流行的开源的PHP内容管理系统,以便没有PHP知识的读者也可以通过国外内容管理系统建立自己的网站。
1. Wordpress
WordPress的是一个功能强大且易于使用的内容管
- Java生成全局唯一标识符
darrenzhu
javauuiduniqueidentifierid
How to generate a globally unique identifier in Java
http://stackoverflow.com/questions/21536572/generate-unique-id-in-java-to-label-groups-of-related-entries-in-a-log
http://stackoverflow
- php安装模块检测是否已安装过, 使用的SQL语句
dcj3sjt126com
sql
SHOW [FULL] TABLES [FROM db_name] [LIKE 'pattern']
SHOW TABLES列举了给定数据库中的非TEMPORARY表。您也可以使用mysqlshow db_name命令得到此清单。
本命令也列举数据库中的其它视图。支持FULL修改符,这样SHOW FULL TABLES就可以显示第二个输出列。对于一个表,第二列的值为BASE T
- 5天学会一种 web 开发框架
dcj3sjt126com
Web框架framework
web framework层出不穷,特别是ruby/python,各有10+个,php/java也是一大堆 根据我自己的经验写了一个to do list,按照这个清单,一条一条的学习,事半功倍,很快就能掌握 一共25条,即便很磨蹭,2小时也能搞定一条,25*2=50。只需要50小时就能掌握任意一种web框架
各类web框架大同小异:现代web开发框架的6大元素,把握主线,就不会迷路
建议把本文
- Gson使用三(Map集合的处理,一对多处理)
eksliang
jsongsonGson mapGson 集合处理
转载请出自出处:http://eksliang.iteye.com/blog/2175532 一、概述
Map保存的是键值对的形式,Json的格式也是键值对的,所以正常情况下,map跟json之间的转换应当是理所当然的事情。 二、Map参考实例
package com.ickes.json;
import java.lang.refl
- cordova实现“再点击一次退出”效果
gundumw100
android
基本的写法如下:
document.addEventListener("deviceready", onDeviceReady, false);
function onDeviceReady() {
//navigator.splashscreen.hide();
document.addEventListener("b
- openldap configuration leaning note
iwindyforest
configuration
hostname // to display the computer name
hostname <changed name> // to change
go to: /etc/sysconfig/network, add/modify HOSTNAME=NEWNAME to change permenately
dont forget to change /etc/hosts
- Nullability and Objective-C
啸笑天
Objective-C
https://developer.apple.com/swift/blog/?id=25
http://www.cocoachina.com/ios/20150601/11989.html
http://blog.csdn.net/zhangao0086/article/details/44409913
http://blog.sunnyxx
- jsp中实现参数隐藏的两种方法
macroli
JavaScriptjsp
在一个JSP页面有一个链接,//确定是一个链接?点击弹出一个页面,需要传给这个页面一些参数。//正常的方法是设置弹出页面的src="***.do?p1=aaa&p2=bbb&p3=ccc"//确定目标URL是Action来处理?但是这样会在页面上看到传过来的参数,可能会不安全。要求实现src="***.do",参数通过其他方法传!//////
- Bootstrap A标签关闭modal并打开新的链接解决方案
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
Bootstrap里面的js modal控件使用起来很方便,关闭也很简单。只需添加标签 data-dismiss="modal" 即可。
可是偏偏有时候需要a标签既要关闭modal,有要打开新的链接,尝试多种方法未果。只好使用原始js来控制。
<a href="#/group-buy" class="btn bt
- 二维数组在Java和C中的区别
流淚的芥末
javac二维数组数组
Java代码:
public class test03 {
public static void main(String[] args) {
int[][] a = {{1},{2,3},{4,5,6}};
System.out.println(a[0][1]);
}
}
运行结果:
Exception in thread "mai
- systemctl命令用法
wmlJava
linuxsystemctl
对比表,以 apache / httpd 为例 任务 旧指令 新指令 使某服务自动启动 chkconfig --level 3 httpd on systemctl enable httpd.service 使某服务不自动启动 chkconfig --level 3 httpd off systemctl disable httpd.service 检查服务状态 service h