X姐说没那么难写。
但是A完这题,我觉得我可以去死了= =
该死的精度问题。
基本解题思路是这样的,对任意三点共线的情况求出其发生的时间t,将其标记为一个事件,可以证明,只有发生事件的时候才有可能使凸包的形状发生变化。
对所有事件按照时间排序,求出所有相邻事件间的凸包形状(在凸包上的点集),并根据该点集和凸包面积的积分求出答案。
本题的难点在于:
1. 精度问题(1e-9丧心病狂!!!double和int的转换,写template有优势)
2. 解方程问题(学习了套公式求参数)
3. 求积分问题(也是套公式求参数,这个求参数的函数真有用)
#pragma comment(linker,"/STACK:102400000,102400000") #include <cstdio> #include <iostream> #include <cstring> #include <cmath> #include <ctime> #include <vector> #include <set> #include <queue> #include <stack> #include <map> #include <algorithm> using namespace std; typedef long long ll; const int maxn = 60; const double eps = 1e-9; template <class Type> struct Point { Type x, y; int id; Point(Type x=0, Type y=0): x(x), y(y) {} }; template <class Type> bool operator < (const Point<Type> &a, const Point<Type> &b) {return a.x < b.x || (a.x == b.x && a.y <b.y);} int dcmp(double x) {if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;} template <class Type> Point<Type> operator + (Point<Type> A, Point<Type> B) {return Point<Type>(A.x+B.x, A.y+B.y);} template <class Type> Point<Type> operator - (Point<Type> A, Point<Type> B) {return Point<Type>(A.x-B.x, A.y-B.y);} template <class Type> Point<Type> operator * (Point<Type> A, Type p) {return Point<Type>(A.x*p, A.y*p);} template <class Type> Type Dot(Point<Type> A, Point<Type> B) {return A.x*B.x + A.y*B.y;} template <class Type> Type Cross(Point<Type> A, Point<Type> B) {return A.x*B.y - A.y*B.x;} template <class Type> int ConvexHull(Point<Type> *A, int n, Point<Type> *ch) { sort(A, A+n); int m = 0; for (int i = 0; i < n; i++) { while (m > 1 && dcmp(Cross(ch[m-1]-ch[m-2], A[i]-ch[m-1])) <= 0) m--; ch[m++] = A[i]; } int k = m; for (int i = n-2; i >= 0; i--) { while (m > k && dcmp(Cross(ch[m-1]-ch[m-2], A[i]-ch[m-1])) <= 0) m--; ch[m++] = A[i]; } return m; } int n, T, m; Point<int> p[maxn], v[maxn]; Point<double> q[maxn], ch[maxn]; double t[250000]; int tot; double ans; template <class Type> void get_coef(Type &a, Type &b, Type &c, Type d, Type k_1, Type b_1, Type k_2, Type b_2) // d * (k_1 x + b_1) * (k_2 x + b_2) { a += d * (k_1 * k_2); b += d * (k_1 * b_2 + k_2 * b_1); c += d * b_1 * b_2; } inline void solve(int a, int b, int c) { if (a == 0) { if (b != 0) t[tot++] = -1.0 * c / b; return; } int delta = b*b-4*a*c; if (delta < 0) return; if (delta == 0) { t[tot++] = 0.5 * (-b) / a; return; } double tmp = sqrt(1.0*delta); t[tot++] = 0.5 * (-b - tmp) / a; t[tot++] = 0.5 * (-b + tmp) / a; return; } inline double integral(int i, int j, double t1, double t2) { int a = 0, b = 0, c = 0; get_coef(a, b, c, 1, v[i].x, p[i].x, v[j].y, p[j].y); get_coef(a, b, c, -1, v[j].x, p[j].x, v[i].y, p[i].y); return a * (t2*t2*t2-t1*t1*t1)/3.0 + b * (t2+t1)*(t2-t1)/2.0 + c * (t2-t1); } int main() { while (scanf("%d%d", &n, &T) == 2) { for (int i=0;i<n;i++) { scanf("%d%d%d%d", &p[i].x, &p[i].y, &v[i].x, &v[i].y); p[i].id = i; } if (n <= 2) {printf("%.10f\n", 0); continue;} t[0] = 0; t[1] = T; tot = 2; for (int i=0;i<n;i++) for (int j=i+1;j<n;j++) for (int k=j+1;k<n;k++) { int a = 0, b = 0, c = 0; get_coef(a, b, c, 1, v[i].x-v[j].x, p[i].x-p[j].x, v[i].y-v[k].y, p[i].y-p[k].y); get_coef(a, b, c, -1, v[i].x-v[k].x, p[i].x-p[k].x, v[i].y-v[j].y, p[i].y-p[j].y); solve(a, b, c); } sort(t, t+tot); ans = 0; for (int k=0;k<tot-1;k++) { double mt = 0.5 * (t[k] + t[k+1]); if (mt < 0 || mt > T) continue; for (int i=0;i<n;i++) { q[i] = Point<double>(p[i].x + v[i].x * mt, p[i].y + v[i].y * mt); q[i].id = p[i].id; } m = ConvexHull(q, n, ch); for (int i=1;i<m;i++) ans += integral(ch[i-1].id, ch[i].id, t[k], t[k+1]); } printf("%.10f\n", abs(ans * 0.5 / T)); } return 0; }