codeforces #340B(简单计算几何 自己想复杂了)

B. Maximal Area Quadrilateral
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Iahub has drawn a set of n points in the cartesian plane which he calls "special points". A quadrilateral is a simple polygon without self-intersections with four sides (also called edges) and four vertices (also called corners). Please note that a quadrilateral doesn't have to be convex. A special quadrilateral is one which has all four vertices in the set of special points. Given the set of special points, please calculate the maximal area of a special quadrilateral.

Input

The first line contains integer n (4 ≤ n ≤ 300). Each of the next n lines contains two integers: xiyi ( - 1000 ≤ xi, yi ≤ 1000) — the cartesian coordinates of ith special point. It is guaranteed that no three points are on the same line. It is guaranteed that no two points coincide.

Output

Output a single real number — the maximal area of a special quadrilateral. The answer will be considered correct if its absolute or relative error does't exceed 10 - 9.

Sample test(s)
input
5
0 0
0 4
4 0
4 4
2 3
output
16.000000
Note

In the test example we can choose first 4 points to be the vertices of the quadrilateral. They form a square by side 4, so the area is 4·4 = 16.


题目大意: 给你n个点,让你从这些点里面寻找4个点,使得四边形的面积最大。当然题目说了没有三个点在一条线上,没有重合的点。当时觉得蛮复杂的就没怎么写。

     解题思路:如果能想到把四边形的面积看做是两个三角形面积之和,那就好办了,枚举四边形的对角线,在两边寻找使得三角形面积最大的点,然后得到最大的四边形的面积。时间复杂度为o(n^3),比较简单了。具体见代码。

     题目地址:B. Maximal Area Quadrilateral

AC代码:
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<cmath>
using namespace std;

struct node
{
    double x;
    double y;
};
node p[305];

double multi(node p1,node p2,node p3)  //p1p2向量 叉乘 p1p3向量
{
    double a1,b1,a2,b2;
    a1=p2.x-p1.x,a2=p3.x-p2.x;
    b1=p2.y-p1.y,b2=p3.y-p2.y;
    return a1*b2-a2*b1;
}

int main()
{
    int i,j,k,n;
    double res;
    while(~scanf("%d",&n))
    {
        res=0;
        for(i=0;i<n;i++)
            scanf("%lf%lf",&p[i].x,&p[i].y);
        for(i=0;i<n;i++)
            for(j=i+1;j<n;j++)  //枚举每条对角线
            {
               double s1=0,s2=0;
               for(k=0;k<n;k++)  //向两边找能够延伸最远的点
               {
                   double tmp=multi(p[i],p[j],p[k]);
                   if(tmp>0)
                      s1=max(s1,tmp/2.0);
                   else
                      s2=max(s2,-tmp/2.0);
               }
               if(s1>0&&s2>0&&s1+s2>res)
                  res=s1+s2;
            }
        printf("%f\n",res);
    }
    return 0;
}


你可能感兴趣的:(codeforces)