《算法导论》— Chapter 12 二叉查找树

查找树是一种数据结构,它支持多种动态集合操作,包括Search、Minimum、Maximum、PreDecessor、Successor、Insert、Delete等。它既可以用作字典,也可以用作优先级队列;在二叉查找树(Binary Search Tree)上执行基本操作的时间与树的高度成正比,对于一颗含有n个结点的完全二叉树,基本操作的最坏情况运行时间为 floor(logn)
本章讨论二叉查找树的基本性质以及上面提及的基本操作的实现。

GitHub 程序实现代码

1 二叉查找树

1.1 性质

如下图所示,一颗二叉查找树是按照二叉树结构来组织的。这样的树一般用链表结构表示,每一个结点是一个对象,包含关键字key、父亲结点parent、左儿子结点left以及右儿子结点right四个属性。
《算法导论》— Chapter 12 二叉查找树_第1张图片
明显的,对于二叉查找树中关键字的存储方式总是满足这样的性质:
x 为二叉查找树中的一个结点,如果 y x 左子树中的一个结点,则 y>key<=x>key ,如果 y x 右子树中的一个结点,则 y>key>=x>key

1.2 基本操作

1.2.1 遍历

根据二叉查找树的性质,可以用一个递归算法按照排列顺序依次输出所有关键字,这就是中序遍历,遍历顺序为根、左子树、右子树。同样的,有前序遍历,根的关键字在左右子树之前输出;后序遍历,根的关键字在其左右子树之后输出。

1.2.2 查找

对于二叉查找树,最常见的操作就是查找树中的某个关键字。查找操作同样采用递归的形式实现,其复杂度等于树的高度。
操作过程如下图所示:

1.2.3 求最大、最小关键字

对于用作优先级队列的结构,求最大最小关键字是必不可少的操作。
要查找二叉查找树中的最小关键字,根据树的性质,只要从根节点开始,沿着各个结点的left指针查找下去,直到遇到NULL为止。
同理,要查找二叉查找树中的最大关键字,根据树的性质,只要从根节点开始,沿着各个结点的right指针查找下去,直到遇到NULL为止。
这两个操作的运行时间都是 O(h)

1.2.4 求前驱、后继

我们知道,中序遍历二叉查找树得到的是一组有序序列,有时候需要求指定结点的前驱与后继。对于给定结点 x 的后继结点是具有大于或等于 x>key 中关键字的最小结点;同理,对于给定结点 x 的前驱结点是具有小于 x>key 中关键字的最大结点。根据二叉查找树的性质,不用对关键字做任何比较就可以得到给定结点的前驱和后继结点。

1.2.5 插入

插入和删除操作会引起整个二叉查找树表示的集合的动态变化。要反应出这种变化,就要修改数据结构,但是在修改的同时,还要保持整棵树的性质不变。
将新值插入到一颗二叉查找树中的过程如下:

1.2.6 删除

相对于插入操作,删除更加复杂一些,下图详细展示了删除不同结点需要的步骤:

对高度为 h 的二叉查找树,动态集合操作Insert与Delete的运行时间都是 O(n)

2 二叉查找树程序实现

下面给出的程序实现,包括了所有以上提及的基本操作:
(1)BinarySearchTree.h

#ifndef _BINARYSEARCHTREE_H_
#define _BINARYSEARCHTREE_H_

#include <iostream>

typedef struct BSTNode{
    BSTNode *left;
    BSTNode *right;
    BSTNode *parent;

    int key;

    BSTNode(int data) : left(NULL), right(NULL), parent(NULL), key(data){}
};
 class BinarySearchTree{ public: BinarySearchTree(); ~BinarySearchTree(); //插入删除操作 void Insert(int data); BSTNode *Delete(int data); BSTNode *root; }; //查找操作 BSTNode *Search(BSTNode * node, int data); //遍历操作 void InOrderWalk(BSTNode * node); void PreOrderWalk(BSTNode * node); void PostOrderWalk(BSTNode * node); //查询最大最小值 BSTNode *Maximum(BSTNode * node); BSTNode *Minimum(BSTNode * node); //查找前驱与后继 BSTNode *PreDecessor(BSTNode *node); BSTNode *Successor(BSTNode *node); #endif

(2)BinarySearchTree.cpp

#include "BinarySearchTree.h"
#include <iostream>

BinarySearchTree::BinarySearchTree()
{
    root = NULL;
}

BinarySearchTree::~BinarySearchTree()
{
    delete root;
}

//向二分查找树中插入数据data
void BinarySearchTree::Insert(int data)
{
    BSTNode *node = new BSTNode(data);
    BSTNode *p = root, *q = NULL;
    while (p != NULL)
    {
        q = p;
        if (p->key > data)
            p = p->left;
        else
            p = p->right;
    }
    node->parent = q;
    if (q == NULL)
        root = node;
    else if (q->key > data)
        q->left = node;
    else
        q->right = node;
}

//从二分查找树中删除数据
BSTNode *BinarySearchTree::Delete(int data)
{
    BSTNode *node = Search(root, data);
    BSTNode *ret , *tmp;

    if (node == NULL)
        return node;

    //如果目标结点只有一个子女则删除该结点,否则删除其后继结点
    if (node->left == NULL || node->right == NULL)
        ret = node;
    else
        ret = Successor(node);

    //如果被删结点有左右孩子,将其链接到被删结点的父节点
    if (ret->left != NULL)
        tmp = ret->left;
    else
        tmp = ret->right;

    if (tmp != NULL)
        tmp->parent = ret->parent;
    //如果被删结点的父节点为空,则说明要删的是根节点
    if (ret->parent == NULL)
        root = tmp;
    else if (ret == ret->parent->left)
        ret->parent->left = tmp;
    else
        ret->parent->right = tmp;

    if (ret != node)
        node->key = ret->key;

    return ret;
}

//查找以node结点为根的子树中值为data的结点
BSTNode *Search(BSTNode * node, int data)
{
    if (node == NULL || node->key == data)
        return node;
    if (data < node->key)
        return Search(node->left, data);
    else
        return Search(node->right, data);
}

//遍历操作
void InOrderWalk(BSTNode * node)
{
    if (node != NULL)
    {
        InOrderWalk(node->left);
        std::cout << node->key << "\t";
        InOrderWalk(node->right);
    }
}

void PreOrderWalk(BSTNode * node)
{
    if (node != NULL)
    {
        std::cout << node->key << "\t";
        InOrderWalk(node->left);
        InOrderWalk(node->right);
    }
}

void PostOrderWalk(BSTNode * node)
{
    InOrderWalk(node->left);
    InOrderWalk(node->right);
    std::cout << node->key << "\t";
}

//查询最大最小值
BSTNode *Maximum(BSTNode * node)
{
    while (node->left != NULL)
        node = node->left;
    return node;
}

BSTNode *Minimum(BSTNode * node)
{
    while (node->right != NULL)
        node = node->right;
    return node;
}

//查找前驱与后继
BSTNode *PreDecessor(BSTNode *node)
{
    if (node->left != NULL)
        return Maximum(node->left);

    BSTNode *p = node->parent;
    while (p != NULL && node == p->left)
    {
        node = p;
        p = node->parent;
    }

    return p;
}


BSTNode *Successor(BSTNode *node)
{
    if (node->right != NULL)
        return Minimum(node->right);
    BSTNode *p = node->parent;
    while (p != NULL && node == p->right)
    {
        node = p;
        p = node->parent;
    }

    return p;
}

(3)main.cpp

#include "BinarySearchTree.h"
#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

const int MAX = 101;
const int N = 10;

int main()
{
    BinarySearchTree *bst = new BinarySearchTree();

    //设置随机化种子,避免每次产生相同的随机数 
    srand(time(0));

    //构造一个随机数组成的二分查找树
    for (int i = 0; i < N; i++)
        bst->Insert(rand() % MAX);

    //遍历查找树
    cout << "先序遍历二分查找树bst:" << endl;
    PreOrderWalk(bst->root);

    //遍历查找树
    cout << endl << "中序遍历二分查找树bst:" << endl;
    InOrderWalk(bst->root);

    //遍历查找树
    cout << endl << "后序遍历二分查找树bst:" << endl;
    PostOrderWalk(bst->root);

    int x = 45;
    BSTNode *node = Search(bst->root, x);
    if (node)
    {
        cout << endl << "二分查找树bst中存在结点x = " << x << endl;
        bst->Delete(x);

        cout << endl << "删除二分查找树中结点x = " << x << "成功!" << endl;

        //遍历查找树
        cout << endl << "先序遍历二分查找树bst:" << endl;
        PreOrderWalk(bst->root);

        //遍历查找树
        cout << endl << "中序遍历二分查找树bst:" << endl;
        InOrderWalk(bst->root);

        //遍历查找树
        cout << endl << "后序遍历二分查找树bst:" << endl;
        PostOrderWalk(bst->root);
        cout << endl << endl;
    }
    else{
        cout << endl << "二分查找树bst中不存在结点x = " << x << endl;
        cout << endl << endl;
    }

    system("pause");
    return 0;
}

测试结果(查找失败的情况):

测试结果(查找成功并删除):
《算法导论》— Chapter 12 二叉查找树_第2张图片

3 随机构造的二叉查找树

在本章的最后介绍了一种随机构造二叉查找树的理论方法,这主要是针对普通二叉查找树基本操作运行时间 O(h) 考虑的,这种方式可以使得:
一棵在n个关键字上随机构造的二叉查找树的期望高度为 O(logn)
这一部分感觉应用不多吧,木有仔细看,^||^~~

你可能感兴趣的:(二叉查找树,算法导论)