- 最小生成树个数
兔猪猪兔
矩阵算法矩阵树最小生成树计数
今天练习最小生成树时做到这样一个题1150.最小生成树计数-AcWing题库一个很裸的求最小生成树个数的题,搜题解发现矩阵树来求解很好,关于图论的结论一般证明都非常麻烦,而且我觉得会用就好,这里附上大佬的证明,矩阵树定理及其无向图形式证明--洛谷博客,我们只取其中的结论部分首先,定义一些东西对于无向图,定义D(G)为图G的度数矩阵,其中:(deg是度数的意思)定义A(G)为图G的邻接矩阵,其中:t
- AtCoder Beginner Contest 336 G. 16 Integers(图计数 欧拉路径转欧拉回路 矩阵树定理 best定理)
Code92007
知识点总结#图计数#欧拉回路/欧拉路径图计数欧拉路径欧拉回路best定理
题目给16个非负整数,x[i∈(0,1)][j∈(0,1)][k∈(0,1)][l∈(0,1)]求长为n+3的01串的方案数,满足长度为4的ijkl(2*2*2*2,16种情况)串恰为x[i][j][k][l]个答案对998244353取模思路来源https://www.cnblogs.com/tzcwk/p/matrix-tree-best-theroem.html矩阵树定理-OIWiki知识点
- 【学习笔记】[ABC323G] Inversion of Tree
仰望星空的蚂蚁
线性代数学习笔记
前置知识:矩阵树定理,特征多项式省流:板子缝合题。可以复习一下线性代数的基本知识。定义Pu>PvP_u>P_vPu>Pv的边价值为xxx,Pun>n>n就寄了。因为都是板子,所以建议多看一下代码。注意行和列都要进行操作。复杂度O(n3)O(n^3)O(n3)。#include#definelllonglong#definepbpush_back#definefifirst#defineseseco
- 矩阵树定理
_fairyland
图论算法
构造一个拉普拉斯矩阵:对于边(u,v)(u,v)(u,v),矩阵a[u][u]a[u][u]a[u][u]++,a[v][v]a[v][v]a[v][v]++,a[u][v]a[u][v]a[u][v]–,a[v][u]a[v][u]a[v][u]–,去掉最后一行最后一列,求行列式(取模用辗转相除),即图的生成树个数矩阵树求的是:∑T∏e∈Tpe\sum_T\prod_{e\inT}p_e∑T∏e
- 矩阵树定理||高斯消元求行列式
Yjmstr
学习笔记矩阵树定理
参考链接-博客园参考链接-oiwiki定理部分并没有什么原创内容,全是阅读上面两篇文章做的笔记。矩阵树定理KirchhoffKirchhoffKirchhoff矩阵树定理(简称矩阵树定理)解决了一张图的生成树个数计数问题。矩阵树定理有很多形式,以下内容是一些声明。应用矩阵树定理的图允许重边,但是不允许自环。以下内容是照抄oiwiki的无向图情况:设GGG是一个有nnn个顶点的无向图。定义度数矩阵D
- 矩阵树定理复习与简要证明
EasternCountry
基础算法算法
矩阵树定理用处计算无向图的生成树个数。命题&简要证明矩阵树定理:给定一个有n个点的图G的邻接矩阵A和度数矩阵B(就是B[i][i]B[i][i]B[i][i]表示i这个点的出度,其他位置均为0),记S为G的生成树个数。设T为B-A,记T划去第k行和第k列的矩阵为P(1y,则意味着一定不会有p[y]=y,所以y也一定会有一条出边,最终一定会形成一个环。有环非简单环就意味着有一个点至少有两个出边,这个
- NOI2021信息竞赛学习笔记
andyc_03
线性代数图论算法
一.图论1.仙人掌问题(圆方树)2.矩阵树定理3.网络流4.基环树二、数据结构1.线段树2.左偏树3.树链剖分4.主席树5.树套树6.长链剖分7.LCT三、数学1.欧拉函数|(扩展)欧拉定理|欧拉反演2.线性筛3.莫比乌斯反演4.FFT&NTT5.生成函数6.多项式全家桶7.单位根反演8.FWT9.拉格朗日插值10.线性基11.burnside&polya四、字符串1.后缀数组2.后缀自动机3.序
- 【模拟赛】星际联邦 federation (矩阵树定理,线性代数,循环行列式)
DD(XYX)
数学图论C++算法线性代数矩阵树定理行列式
题面题解如果我们把这个www定义为某一种距离的follow可连的边数,那么就很清楚了:对于所有1≤i,j≤n1\leqi,j\leqn1≤i,j≤n,iii向jjj连有wi−j+nmod nw_{i-j+n\modn}wi−j+nmodn条有向边,而每个点向0号点连有1条有向边。求以0为根的内向生成树个数。直接上矩阵树定理,由于最终求余子式,干脆就忽略0号点,那么答案就是det[1+∑w−w1
- 生成树计数 --- Matrix-Tree定理(基尔霍夫矩阵树定理)
Anxdada
定理证明请点这,多看几遍就懂了模板题点这题目大意:*一个有n座城市的组成国家,城市1至n编号,其中一些城市之间可以修建高速公路;*需要有选择的修建一些高速公路,从而组成一个交通网络;*计算有多少种方案,使得任意两座城市之间恰好只有一条路径;模板:#include#include#include#include#include#definelllonglongusingnamespacestd;co
- 【bzoj4031】 HEOI2015小Z的房间 矩阵树定理
qingdaobaibai
线性代数图论
第一次做矩阵树定理的题,其实就是记了个结论也没太看证明,然后学了学怎么用高斯消元求行列式,整数消元还真别扭,要用辗转相除,然后要注意取模的问题,一开始以为hzwer写麻烦了,后来想了想不加外面那句话会有问题,因为取模了。#include#include#include#include#include#include#definemod1000000000usingnamespacestd;intd
- [矩阵树定理][HEOI2015]小Z的房间
romiqi_new
矩阵树定理
传送门矩阵树定理:一张图的基尔霍夫矩阵即为其度数矩阵-邻接矩阵,度数矩阵中D[i][i]D[i][i]D[i][i]为点i的度一张图的生成树个数即为其基尔霍夫矩阵的行列式Code:#include#defineintlonglong#defineN90#definemod1000000000usingnamespacestd;intn,m,f[N][N];inttot,Map[N][N];void
- bzoj4031: [HEOI2015]小Z的房间
OI界第一麻瓜
矩阵树定理
题目大意就是生成树计数问题题解矩阵树定理题表和定理大意CODE:#include#include#include#includeusingnamespacestd;typedeflonglongLL;constLLMOD=1e9;constLLN=105;LLn,m;LLidx[N][N],id=0;charss[N][N];LLd[N][N],a[N][N];LLc[N][N];//度数是否有边
- [BZOJ4031][HEOI2015]小Z的房间(矩阵树定理+高斯消元)
FromATP
BZOJ高斯消元消来消去
======这里放传送门======题解没错这就是个裸题矩阵树定理:定义一个图的基尔霍夫矩阵为:A[i][j]=⎧⎩⎨d[i],−1,i=ji≠j其中d[i]表示点i的度。对于无向图来说,这个矩阵的任何一个n-1阶主子式的行列式的值就是这个图的不同生成树个数。其中n-1阶主子式表示在矩阵中任意去掉标号相同的一行和一列以后剩下的子矩阵但是这题模数实在是太!恶!心!了!!!ATP尝试了N多种方法包括什
- BZOJ4031 [HEOI2015]小Z的房间
dogeding
矩阵树懵逼了半天终于AC
传送门题解:因为持续写题感到恶心又不想显得太颓于是随便存几个板子求生成树方案数?矩阵树定理板子题。这就当我存个板子的地方吧。总之就是对于边(i,j),矩阵a[i][j]值-1,a[i][i]值+1。然后求个行列式即可。代码:#include#include#definemaxn105#definemod1000000000usingnamespacestd;intn,m,d[5]={0,1,0,-
- CF917D Stranger Trees
hanyuweining
题解————线性代数————拉格朗日插值矩阵树定理
传送门非常舒适的一道题趁机学了一发拉格朗日插值2333貌似是WC2018讲的题我们对于在原图中存在的边记为x没出现的边记为1然后矩阵树定理求出行列式对应的x^k的系数就是跟原图有k条重边的方案数显然带多项式进去不好算那么我们拉格朗日插值对于x分别算1-n得到了n个值然后插值回来就可以了拉格朗日求系数我也没有找到好的博客于是找到学长求助结果他们说的我很懵逼【大概是我菜的真实于是自己YY了一个拉格朗日
- [矩阵树定理][prufer序][CF917D]Stranger Trees
ZLTJohn
DP图论杂题计数类问题线性基及其他线性代数相关数论杂知识点
题目描述给定一棵n个点组成的有标号的树T,我们定义两棵有标号的树的相似度为它们共有的边的个数。现在我们想知道,n个点的完全图所有的有标号的生成树中,有多少棵树与T的相似度为0,1,2…n-1,答案对10^9+7取模对于20%的数据,n#include#include#include#include#includeusingnamespacestd;typedeflonglongll;typedef
- [SP104 HIGH]Highways [HEOI2015]小Z的房间——矩阵树定理入门
ylsoi
高斯消元矩阵树定理
矩阵树定理:用于计算无向连通图的生成树个数。计算出整张图的度数矩阵D(即Di,iD_{i,i}Di,i表示i的度数),和邻接矩阵A(即Ai,jA_{i,j}Ai,j表示i和j的连边的数量),然后得到基尔霍夫矩阵(D-A),计算新矩阵的任意n-1阶主子式的绝对值即可。计算行列式的值:行列式的值直接计算复杂度太高,于是我们利用类似于高斯消元的方法将行列式消成一个上三角矩阵,不难得出此时除了主对角线之外
- 生成树计数问题——矩阵树定理及其证明
WerKeyTom_FTD
杂文矩阵树定理
生成树计数问题给一副n个节点的无向图G,求一个包含n-1条边的边集使得边集的边构成一颗树,问这样的边集的数量。矩阵树定理以下我们都不对重边与自环进行讨论。实际上,即使有重边矩阵树定理仍然是正确的。先定义度数矩阵D,是一个n*n的矩阵。Di,i=节点i的度数,对于i不等于j,Di,j=0。再定义邻接矩阵A,也是一个n*n的矩阵。i与j有边相连就有Ai,j=1否则Ai,j=0。最后定义基尔霍夫矩阵C=
- [洛谷P4111][HEOI2015]小Z的房间
weixin_34255793
题目大意:有一个$n\timesm$的房间,一些位置是房间,另一些位置是柱子,相邻两个房间之间有墙,问有多少种方案可以打通一些墙把所有房间连成一棵树,柱子不可以打通题解:矩阵树定理,把房间当点,墙当边,一张图的生成树个数为每个点的度数矩阵减去邻接矩阵的任意一个代数余子式的值。模数是$10^9$,不可以直接高斯消元,可以用辗转相除法来消元卡点:无C++Code:#include#include#in
- [HEOI2015]小Z的房间(矩阵树定理学习笔记)
weixin_34304013
题目描述你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路。现在,你希
- 洛谷 P3317 [SDOI2014]重建(矩阵树定理+数学推导) [bzoj3534]
weixin_34409822
传送门首先,大家应该都能看出来这是矩阵树定理,然后大部分人应该就会把概率直接带进去算,然后就愉快地WA掉了(我当时就是这么想的,幸亏没交)然后就来讲这个题的正解思路。首先我们来看答案应该是怎样的:ans=∑Tree∏(u,v)∈EP(u,v)∏(u,v)∉E(1−P(u,v))然后我们来想一下怎么来构造这个答案:首先,我们直接矩阵树用高斯算出来的结果应该是这个:now=∑Tree∏(u,v)∈EP
- 矩阵树定理及变元矩阵树定理
weixin_30677073
变元矩阵树定理:定义Kirchhoff矩阵\(K\),其中\(K_{ii}\)为所有与\(i\)相连的边的权值和\(K_{ij}\)为连接\(i\)与\(j\)的边权值和的负值那么\(\sum\limits_{tree\inT}\prod\limits_{E\intree}val(E)\),\(T\)为生成树集合,就是生成树的边积的和然后矩阵树定理就是把\(K_{ii}\)定义为\(i\)的度数\
- 【bzoj4031】[HEOI2015]小Z的房间 矩阵树定理模板
愤怒的愣头青
矩阵树定理学习资料
Description你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通
- [BEST定理 矩阵树定理] BZOJ 3659 Which Dreamed It
里阿奴摩西
Matrix-Tree定理图论
BESTtheorem一个证明?注意区分下题目中要求的“欧拉回路”的条数和定理中欧拉回路的条数欧拉回路是个回路所以存在循环同构题中要求起点是1实际上还要乘上1的度数因为从1的任一边出发在题中都算作一种不同方案#include#include#includeusingnamespacestd;typedeflonglongll;constintN=105;constintP=1000003;intn
- 【BZOJ】【P3534】【Sdoi2014】【重建】【题解】【矩阵树定理】
iamzky
OI
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3534dt学了矩阵树定理邻接矩阵中的的权可以不是1,而是其他权值,比如概率这样计算出来的就是所有生成树的概率和,即但是这样不对……生成一颗生成树T的概率应该是接着就是神奇的转换设G要求的矩阵,P是给出的矩阵我们令对G计算n-1阶主子式,即有那么把它乘上tmp答案就这么出来了!!!!当P=1时处
- [矩阵树定理][SDOI2014]重建
romiqi_new
矩阵树定理
BZOJ3534裸的矩阵树就不用说了吧只不过是一个简单的变元矩阵树,把概率放进去就行了Code:#include#definedbdouble#defineeps1e-7usingnamespacestd;inlineintread(){intres=0,f=1;charch=getchar();while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}w
- BZOJ3534: [Sdoi2014]重建【变元矩阵树定理】
XSamsara
BZOJ矩阵树定理
3534:[Sdoi2014]重建变元矩阵树定理邻接矩阵中是可以带权的,wijwijwij表示i,ji,ji,j的边权,eieiei表示边。定义G(i,j)=G(j,i)=wijG(i,j)=G(j,i)=wijG(i,j)=G(j,i)=wij,令G(i,i)=−∑j≠iG(i,j)G(i,i)=−∑_{j≠i}G(i,j)G(i,i)=−∑j̸=iG(i,j)那么n−1n−1n−1阶主子式的值
- 【BZOJ4894】天赋
cz_xuyixuan
【OJ】BZOJ【类型】做题记录
【题目链接】点击打开链接【思路要点】矩阵树定理同样可以计算有向图某个点的外向生成树的个数。具体方法就是认为度数为每个点的入度,删除一号点(树根)所在的行列,然后求行列式。时间复杂度O(N3)O(N3)。【代码】#includeusingnamespacestd;constintMAXN=305;constintP=1e9+7;templatevoidchkmax(T&x,Ty){x=max(x,y
- bzoj 4639 期望 矩阵树定理
SFN1036
矩阵树定理
题意有一个n个点m条边的图,每条边有长度和美丽值。求该图的所有最小生成树中美丽值的和的期望。满足长度相同的边的数量不超过30。n≤10000,m≤200000n\le10000,m\le200000n≤10000,m≤200000分析显然长度不同的边的贡献是独立的。那么我们可以把每一种距离的边拿出来,对每一个连通块分别处理。枚举同一个连通块中的每一条边,用矩阵树定理算出一定包含这条边的最小生成树的
- 【SPOJ】Highways(矩阵树定理)
小蒟蒻yyb
题面Vjudge洛谷题解矩阵树定理模板题无向图的矩阵树定理:对于一条边(u,v),给邻接矩阵上G[u][v],G[v][u]加一对于一条边(u,v),给度数矩阵上D[u][u],D[v][v]加一定义霍尔基夫矩阵C=D−G将基尔霍夫矩阵去除任意一行和任意一列之后,得到一个(n−1)∗(n−1)的行列式C求解这个行列式的值,最后的|det(C)|就是结果#include#include#includ
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出