- 算法学习笔记:概率与期望
Plozia
数学/数论学习笔记+专项训练
概率与期望1.前言2.定义3.理解4.期望方程5.总结1.前言概率我们很熟,在数学课本里面我们就已经学到过概率的基本定义以及计算方式。期望我们不熟,他与概率密切相关,计算方式基于概率。2.定义概率的计算方式不必我多说,各位在数学课中都有了解。而期望,从某种意义上来讲其实就是一个加了权值的概率。我将使用一个例子来说明期望是什么:假设某一天小z有一场满分为100分的数学考试。他妈妈说:“儿子,如果你能
- [算法学习笔记](超全)概率与期望
L('ω')┘脏脏包└('ω')」
c++题解算法
引子先来讲个故事······话说在神奇的OI大陆上,有一只papermouse有一天,它去商场购物,正好是11.11,商店有活动它很荣幸被选上给1832抽奖在抽奖箱里,有3个篮蓝球,12个红球papermouse能抽3次蒟蒻的papermouse就疑惑了:抽到至少1个篮蓝球的概率是多少???Answer:总共有15个球只抽到1个篮蓝球的概率是0.435165(很好理解吧,在4个篮蓝球里取一个,再在
- 专题·数学概率与期望【including 条件概率,贝叶斯定理, 全概率公式,数学期望, 绿豆蛙的归宿
樱狸❀
数论数论数学期望概率
初见安~~~又开启数论的探索啦~~:)一。概率1.基本定义在概率论中,我们把一个随机事件的一个可能结果称为其样本点,其所有样本点构成的集合称之为样本空间。(注意,随机事件并不一定只有一种可能结果)在样本空间中,我们称事件所包含的子集为随机事件。概率的定义就很简单了,我们也都知道样本空间中的任意随机事件的概率不会超过1不会小于0.就比如我们抛硬币连续扔三次(不考虑侧面稳落地),有8中可能:AAA,A
- 第十六章 隐马尔科夫模型
小酒馆燃着灯
机器学习手写AI深度学习机器学习
文章目录简介概念随机变量与随机过程马尔可夫链隐含马尔可夫模型两个基本假设三个基本问题算法观测序列生成算法概率计算算法前向概率与后向概率前向算法后向算法小结概率与期望学习问题监督学习方法Baum-Welch算法预测算法近似算法(MAP)维特比算法(Viterbi)简介动态贝叶斯网络的最简单实现隐马尔可夫模型。HMM可以看成是一种推广的混合模型。序列化建模,打破了数据独立同分布的假设。有些关系需要理清
- Algorithm Review 9 数学相关
Log_x
学习笔记概率论算法
概率与期望结论1设xxx为离散随机变量,且x∈Nx\in\mathbbNx∈N,则E(x)=∑i=1∞i⋅P(x=i)=∑i=1∞P(x≥i)E(x)=\sum\limits_{i=1}^{\infty}i·P(x=i)=\sum\limits_{i=1}^{\infty}P(x\gei)E(x)=i=1∑∞i⋅P(x=i)=i=1∑∞P(x≥i)。树上随机游走给定一棵树,从树中的某点xxx出发,
- SPSS卡方检验结果解读详解
nekonekoboom
SPSS
卡方检验(Chi-SquareTest)是由Pearson提出的一种统计方法,在一定的置信水平和自由度下,通过比较卡方统计量和卡方分布函数概率值,判断实际概率与期望概率是否吻合,通过比较理论概率和实际概率的吻合程度,可检验两个分类变量的相关性。用户可利用SPSS软件方便的完成卡方检验,在SPSS软件中,默认H0成立,即观察频数和实际频数无差别,即两组变量相互不产生影响,两组变量不相关,如果检验P值
- 算法学习笔记:概率/期望 DP
Plozia
动态规划学习笔记+专项训练算法动态规划数据结构
算法学习笔记:概率/期望DP1.前言2.例题3.练习题1.前言概率/期望DP,是一种DP,用来计算概率或者是期望。其实我认为这种DP就是计算期望的,毕竟概率可以看成代价为1的期望。没有学过期望的读者可以看看这篇文章:算法学习笔记:概率与期望而概率/期望DP,最关键的就是期望方程。下面看一道例题。2.例题CF1265EBeautifulMirrors以这题为例,详细讲解期望DP的一般套路。为了方便,
- 隐马尔可夫模型 (hidden Markov model, HMM)
连理o
机器学习概率论自然语言处理机器学习
本文为《统计学习方法》的读书笔记目录隐马尔可夫模型的基本概念隐马尔可夫模型的定义观测序列的生成过程隐马尔可夫模型的3个基本问题概率计算算法直接计算法前向算法(forwardalgorithm)后向算法(backwardalgorithm)一些概率与期望值的计算学习算法监督学习方法Baum-Welch算法(无监督学习方法)预测算法近似算法维特比算法(Viterbialgorithm)隐马尔可夫模型的
- 机器学习算法(十七):隐马尔科夫模型(HMM)
意念回复
机器学习机器学习算法机器学习
目录1隐马尔科夫模型1.1模型概念1.2定义1.3隐马尔科夫模型的两个性质1.4盒子与球模型1.5三个基本问题2概率计算算法2.1直接计算法2.2前向算法2.3后向算法2.4一些概率与期望值的计算3学习算法3.1监督学习方法3.2Baum-Welch算法3.3Baum-Welch模型参数估计公式4预测算法4.1近似算法4.2维比特算法5总结马尔科夫链:机器学习算法(十六):马尔科夫链_意念回复的博
- 机器学习面试题——朴素贝叶斯
冰露可乐
机器学习深度学习朴素贝叶斯贝叶斯公式大厂笔试面试题
机器学习面试题——朴素贝叶斯提示:这些知识点也是大厂笔试经常考的题目,我记得阿里和京东就考!!!想必在互联网大厂就会用这些知识解决实际问题朴素贝叶斯介绍一下朴素贝叶斯优缺点贝叶斯公式朴素贝叶斯中的“朴素”怎么理解?什么是拉普拉斯平滑法?朴素贝叶斯中有没有超参数可以调?你知道朴素贝叶斯有哪些应用吗?朴素贝叶斯对异常值敏不敏感?频率学派与贝叶斯学派的差别概率与期望的公式先验概率与后验概率文章目录机器学
- [NOI2005] 聪聪与可可
Sito_Ask
NOI2005聪聪与可可~~机器猫の传送门~~期望DP+记搜聪聪一直在向可可方向追,所以不会回到原处,不具有后效性,考虑用概率与期望DP+记忆化搜索求解用dp[x][y]表示可可在x点,聪聪在y点时步数的期望值判断边界①当x==y时结束(此时毫无疑问的,dp[x][y]=0)②当
- 2019暑期计划 / 每日刷题记录
weixin_30951743
计划##1.复习与提高###动态规划-数位DP-树形DP###图论-Tarjan-拓扑序的应用-树链剖分-点分治-树上距离-网络流/费用流###数据结构-平衡树-主席树-ST表###数论-整数研究-组合数学-概率与期望##2.新知学习###离线算法-CDQ分治-整体二分###数据结构-线段树扩展操作-树套树-LCT###图论-基环树每日刷题记录转载于:https://www.cnblogs.com
- 一文读懂NLP之隐马尔科夫模型(HMM)详解加python实现
Elenstone
NLP算法详解机器学习算法nlp
一文读懂NLP之隐马尔科夫模型(HMM)详解加python实现1隐马尔科夫模型1.1HMM解决的问题1.2HMM模型的定义1.2.1HMM的两个假设1.2.2HMM模型1.3HMM模型的三个基本问题2概率计算问题及算法2.1直接计算法2.2前向算法2.3后向算法2.4一些概率与期望值的计算3模型训练问题及算法3.1监督学习——最大似然估计3.2非监督学习——EM算法3.3Baum-Welch算法4
- 真正的决策都是不确定性决策
蓝色多莉
阅读笔记第126/365天今日阅读《升维——不确定时代的决策博弈》作者:【澳】王珞第3章:真正的决策都是不确定性决策一、企业利润来源于不确定性。1、什么是不确定性?风险是能被计算概率与期望值的是基于已经发生的事件的统计,而不确定性是无法被预见的,即使能被预见,其发生的概率也不能被计算的未来事件。不确定性事件是不可预见,没有概率的,包括灾难、命运、前景等一切未来可能发生的事件,是每个个体未来都要共同
- 解题报告(十七)概率与期望(概率论)(ACM / OI)
繁凡さん
【解题报告】-超高质量题单+题解概率与期望《概率论》
繁凡出品的全新系列:解题报告系列——超高质量算法题单,配套我写的超高质量题解和代码,题目难度不一定按照题号排序,我会在每道题后面加上题目难度指数(1∼51\sim51∼5),以模板题难度111为基准。这样大家在学习算法的时候就可以执行这样的流程:%阅读我的【学习笔记】/【算法全家桶】学习算法⇒\Rightarrow⇒阅读我的相应算法的【解题报告】获得高质量题单⇒\Rightarrow⇒根据我的一句
- 概率与期望习题总结
总结概率题一般正着推期望题一般倒着推图上的问题如果是\(DAG\)可以直接转移否则可能要用到高斯消元\(20\)的数据范围大概率是装压有些看似无限循环的式子其实可以倒着递推1、骰子基础版题目描述众所周知,骰子是一个六面分别刻有一到六点的立方体,每次投掷骰子,从理论上讲得到一点到六点的概率都是\(1/6\)。今有骰子一颗,连续投掷\(N\)次,问点数总和大于等于\(X\)的概率是多少?输入仅有一行包
- HDU 4254 A Famous Game(概率与期望)
clover_hxy
组合数学概率与期望
题目描述传送门题目大意:一个口袋里有n个红色或蓝色的球。n+1种颜色分布情况(i个红球n−i个蓝球)的概率是相等的。B从口袋中不放回地摸出了p个球,其中有q个是红色的。求B再摸一个球时,摸出的球是红色的概率。题解设Nk表示n个球中有k个红球的概率。A表示p个球中有q个红球B表示下次摸出的是红球那么P(Nk)=1n+1P(A)=C(k,q)C(n−k,p−q)C(n,p)P(B|ANk)=k−qn−
- HDU 5753 Permutation Bo (概率与期望)
等我学会后缀自动机
HDU习题集规律/递推概率论/博弈论
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5753#includeusingnamespacestd;#definedebugputs("YES");#definerep(x,y,z)for(int(x)=(y);(x)#definemk(x,y)make_pair(x,y)#definefifirst#definesesecondconstin
- 【总结】概率与期望
616156
总结数论DP高斯消元数学概率与期望
前言作为NOIP级的知识点,概率与期望算是比较困难的类型了。但其实也不是无法解决的难题。本文主要通过作者本人的刷题经历,对概率期望类题目进行总结。概率51Nod1639绑鞋带:有n根鞋带混在一起,每根鞋带有两个鞋带头。现在重复n次以下操作:随机抽出两个鞋带头,把它们绑在一起。求最终只形成一个环的概率?依次考虑每一步操作,现在已经选出来了一个头,它必须和非它所在的链的另一个头绑在一起,才能得到合法方
- 概率与期望详解!一次精通oi中的概率期望
Tyl18858230607
目录基础概念最大值不超过Y的期望概率为P时期望成功次数基础问题拿球随机游走经典问题期望线性性练习题例题选讲noip2016换教室区间交0-1边树求直径期望球染色区间翻转二位&三维凸包点数期望单选错位KILL后记@(期望与概率)基础概念随机变量:有多种可能的取值的变量万物都可以当做随机变量,包括常数,方便用\(\sum\)统计P(A):事件A发⽣的概率E(X):随机变量X的期望值,\(E(X)=Su
- 隐马尔可夫模型
tt12121221
隐马尔可夫模型隐马尔科夫模型的基本概念概率计算算法直接计算法前向算法后向算法一些概率与期望的计算学习算法Baum-Welch算法预测算法近似算法维特比算法是用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成的观测序列的过程,属于生成模型。马尔科夫模型中主要讨论三个问题:即概率计算算法、学习算法以及预测算法。隐马尔科夫模型的基本概念隐马尔科夫模型由初始概率分布、状态转移概率分布以及观测概率分
- 概率期望中高斯消元的几种用法
IDnumber4
数论题解总结
前置知识:高斯消元法博主理解浅显,只能膜piao别人的总结戳别人家的题解咳咳……还是简单介绍两句它可以用O(n3)O(n^3)O(n3)的复杂度解出n元方程组表示方法:矩阵tips:一般情况下高斯消元可能出现无解、无穷解的情况,我的做法里面没有判断,由于矩阵对角线上不会出现0。概率与期望:概率:发生的可能性期望:概率的加权平均数(表示对权值的一个预期值)eg.某图中从起点经过i步到达终点的可能性为
- codeforces 335E. Counting Skyscrapers (概率与期望)
clover_hxy
概率与期望
题目描述传送门中文题意题解先从简单的的入手吧。(1)由BOb推Alice我们需要证明的就是如果得分是2^i,那么经过的楼数也是2^i(这里经过的楼数指的是中间经过的数量+右端点)我们假设左端点一定可以连高度是i+1,编号是i的溜索,那么他的概率就是1.对于中间经过的溜索我们要求他们的高度是[1..i]之间的任意数,右端点的高度是[i+1…inf]那么中间经过的数量实际也是正无穷项。先考虑高度是[1
- 【专题】概率和期望
weixin_33923762
【参考】浅析竞赛中一类数学期望问题的解决方法信息学竞赛中概率问题求解初探WC2018冬令营课件《概率与期望及其应用》曹文【概率的定义】基本事件是一次实验可能出现的不可再分解的直接结果,样本空间Ω是全体基本事件的集合,随机事件是若干基本事件组成的集合。事件的并:事件C=”事件A与事件B至少有一个发生“,则C=A∪B。事件的交:同时发生,A∩B。一个随机事件的概率可以认为是事件占样本空间的比例(不严格
- 洛谷P1654 OSU!_概率与期望
EM-LGH
Code:#include#includeusingnamespacestd;constintmaxn=1000000+4;doublef[maxn],g[maxn],h[maxn];intmain(){intn;scanf("%d",&n);for(inti=1;i<=n;++i){doubleperc;scanf("%lf",&perc);h[i]=(h[i-1]+1)*perc;g[i]=(
- LuoguP1654 OSU! 概率与期望
EM-LGH
感觉数学期望这里始终都没太学明白.期望在任何时候都具有线性性,即$E(a+b)=E(a)+E(b)$,这个式子任何时候都成立.先考虑求$x$,$x^2$.令$x1[i]$表示$i$为$1$向前的极长$1$的期望长度,$x2[i],x3[i]$为$x^2,x^3$的期望.那么考虑从$i-1$那里转移过来,就是$E(j+1)=E(j)+E(1)=E(j)+1$.概率是$q[i]$,所以$x1[i]=(
- 老年(已退役)选手复习计划 PART2
CR1SceNT
放上来有些符号产生了一点偏差。。不知道怎么变成了问号。。比较懒懒得改了。。意会,意会。。2017.7.4:概率与期望:1.BZOJ1415:预处理p[x][y]表示,猫在x,鼠在y时猫下一步走哪里。然后记忆化搜索。2.BZOJ3450:再求一个期望长度就好解决了。斜率优化:1.BZOJ1010:推式子。2.BZOJ1096:同上。3.BZOJ3156:同上。4.BZOJ3437:同上。5.BZOJ
- [学习笔记]高斯消元求解两种特殊问题(带状矩阵/主元法)
C20190406Panda_hu
#OI知识点合辑
本文章是[学习笔记]概率与期望进阶的一部分由于时间问题我写的比较简略,所以我把大佬的总结链接贴上来了(应该没什么吧qwq)。1概述最常见的当然是随机游走问题了…•fu=∑pu,v∗(fv+wu,v)f_u=\sump_{u,v}*(f_{v}+w_{u,v})fu=∑pu,v∗(fv+wu,v)•计算期望在这个节点上,停留多少步:fu=∑pv,u∗fv+[u=S]f_u=\sump_{v,u}*f
- 【概率与期望】【暴力搜索】[Codeforces#621]题解+总结
weixin_30340775
WetSharkandOddandEven题目描述Today,WetSharkisgivennintegers.Usinganyoftheseintegersnomorethanonce,WetSharkwantstogetmaximumpossibleeven(divisibleby2)sum.Please,calculatethisvalueforWetShark.Note,thatifWet
- [CodeForces891E]Lust-生成函数-概率与期望
zlttttt
生成函数【GenerationFunction】Theory】
LustAfalsewitnessthatspeakethlies!Youaregivenasequencecontainingnintegers.Thereisavariableresthatisequalto0initially.Thefollowingprocessrepeatsktimes.Chooseanindexfrom1tonuniformlyatrandom.Nameitx.Add
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s