- 《神经网络与深度学习》(邱锡鹏) 内容概要【不含数学推导】
code_stream
#机器学习神经网络
第1章绪论基本概念:介绍了人工智能的发展历程及不同阶段的特点,如符号主义、连接主义、行为主义等。还阐述了深度学习在人工智能领域的重要地位和发展现状,以及其在图像、语音、自然语言处理等多个领域的成功应用。术语解释人工智能:旨在让机器模拟人类智能的技术和科学。深度学习:一种基于对数据进行表征学习的方法,通过构建具有很多层的神经网络模型,自动从大量数据中学习复杂的模式和特征。第2章机器学习概述基本概念:
- 大模型如何改变教育?典型应用场景的探究与展望!
AGI大模型学习
大模型应用人工智能AI产品经理llama大模型AI大模型教程
目前,大模型在教育领域的应用主要体现在个性化学习助手、智能问答系统、内容生成与创作辅助、智能写作评估、跨语言学习支持、数学解题辅助等几个方面。大模型技术在教育领域凭借卓越的数据处理能力和深度学习技术,极大推动了教育质量的提升与教育公平的实现。分级分类的教育数据助力大模型发展在构建与优化大模型的过程中,教育数据能够帮助我们更精准地理解教育现象,更有质量地辅助教学。教育数据涵盖广泛,包括但不限于学生的
- 《编程小白必看!字符加减法开启大小写转换之门,解锁数学分析方法密码,列方程思想》
1zero10
c语言算法
字符加减法的应用1.输入小写字母,输出大写字母首先肯定有定义变量ch;并且让我们可以在黑框输入一个变量,也就是任意一个小写字母charch;scanf("%c\n",ch);接着分析小写字母和大写字母的联系:举例分析,比如b在小写字母表排第二位,而B在大写字母表里也排第二位小写字母和大写字母都有26个所以可以利用排位一致的特点进行方程的构造设小写字母为ch(上面已经设了)设大写字母为y到这里还毫无
- flutter pigeon gomobile 插件中使用go工具类
yujunlong3919
fluttergolangswiftkotlin
文章目录为什么flutter要用go写工具类1.下载pigeon插件模版2.编写go代码3.生成greeting.aar,Greeting.xcframework4.ios5.android6.dart中使用为什么flutter要用go写工具类在Flutter应用中,有些场景涉及到大量的计算,比如复杂的加密算法、数据压缩/解压缩或者图形处理中的数学计算等1.下载pigeon插件模版base_plu
- 刷题计划day28 动规(二)【不同路径】【不同路径 II】【整数拆分】【不同的二叉搜索树】
哈哈哈的懒羊羊
数据结构算法javaleetcode蓝桥杯面试动态规划
⚡刷题计划day28动规(二)继续,下一期是背包专题,可以点个免费的赞哦~往期可看专栏,关注不迷路,您的支持是我的最大动力~目录题目一:62.不同路径法一:动态规划法二:动态规划空间优化题目二:63.不同路径II题目三:343.整数拆分法一:动态规划法二:数学法(复杂度最低)题目四:96.不同的二叉搜索树题目一:62.不同路径62.不同路径(https://leetcode.cn/problems
- 使用Yuan 2.0与LangChain构建智能聊天应用:完整指南
scaFHIO
langchainpython
技术背景介绍Yuan2.0是IEIT系统开发的新一代基础大语言模型,包括Yuan2.0-102B、Yuan2.0-51B和Yuan2.0-2B三种版本。相比之前的Yuan1.0,Yuan2.0使用了更广泛的高质量预训练数据,并通过指令微调数据集增强了模型的语义理解、数学推理、编程知识等能力。为了方便开发者集成,Yuan2.0提供了兼容OpenAIAPI的服务接口。本文将介绍如何通过LangChai
- 从C语言的角度重构数据结构系列(十三)-位运算
文宇肃然
数据结构常见算法原理讲解C语言数据结构
位运算简介位运算位运算就是基于整数的二进制表示进行的运算。由于计算机内部就是以二进制来存储数据,位运算是相当快的。基本的位运算共6种,分别为按位与、按位或、按位异或、按位取反、左移和右移。运算运算符数学符号表示解释与&&、and只有两个对应位都为1时才为1或||、or只要两个对应位中有一个1时就为1异或^、xor只有两个对应位不同时才为1左移假设要将一个无符号整数乘以2。可以简单地将所有位向左边移
- 流形拓扑学:Chern数与Euler示性数
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
流形拓扑学:Chern数与Euler示性数1.背景介绍流形拓扑学是数学中一个重要的分支,研究流形的拓扑性质。流形是局部类似于欧几里得空间的空间,广泛应用于物理学、计算机科学和工程学等领域。Chern数和Euler示性数是流形拓扑学中的两个重要不变量,它们在描述流形的几何和拓扑性质方面起着关键作用。Chern数是由中国数学家陈省身提出的,主要用于描述复流形的特征类。Euler示性数则是一个更为古老的
- 《机器学习数学基础》补充资料:四元数、点积和叉积
CS创新实验室
机器学习数学基础机器学习人工智能机器学习数学基础
《机器学习数学基础》第1章1.4节介绍了内积、点积的有关概念,特别辨析了内积空间、欧几里得空间;第4章4.1.1节介绍了叉积的有关概念;4.1.2节介绍了张量积(也称外积)的概念。以上这些内容,在不同资料中,所用术语的含义会有所差别,读者阅读的时候,不妨注意,一般资料中,都是在欧几里得空间探讨有关问题,并且是在三维的欧氏空间中,其实质所指即相同。但是,如果不是在欧氏空间中,各概念、术语则不能混用。
- 四元数:连接四维时空与三维旋转的数学桥梁
aichitang2024
算法数学知识点讲解四元数线性代数
四元数:连接四维时空与三维旋转的数学桥梁引言1843年,威廉·哈密顿在都柏林布鲁姆桥的顿悟,不仅诞生了四元数理论,更开创了高维数在三维空间应用的新纪元。本文将揭示四元数如何架起四维数学空间与三维物理世界的桥梁。一、四元数基础架构1.代数定义四元数是形如的超复数:q=w+xi+yj+zk其中:w为实部(Scalar)(x,y,z)为虚部(Vector)i²=j²=k²=ijk=-12.基本运算规则运
- 闵氏几何详解
aichitang2024
算法数学知识点讲解几何学闵可夫斯基几何
闵氏几何详解闵氏几何(Minkowskigeometry)最初由数学家赫尔曼·闵可夫斯基(HermannMinkowski)提出,是现代几何学和理论物理的重要分支。它既与爱因斯坦的狭义相对论密切相关,也在更普遍的度量空间研究中占有显赫地位。本文将对闵氏几何的基础概念、结构、在物理中的用途以及与其他几何的对比等方面进行详细介绍。一、历史背景与概念渊源提出背景19世纪末到20世纪初,数学家们在研究欧几
- 《机器学习数学基础》补充资料:求解线性方程组的克拉默法则
CS创新实验室
机器学习数学基础机器学习人工智能机器学习数学基础
《机器学习数学基础》中并没有将解线性方程组作为重点,只是在第2章2.4.2节做了比较完整的概述。这是因为,如果用程序求解线性方程组,相对于高等数学教材中强调的手工求解,要简单得多了。本文是关于线性方程组的拓展,供对此有兴趣的读者阅读。1.线性方程组的解位于一条直线不失一般性,这里讨论三维空间的情况,对于多维空间,可以由此外推,毕竟三维空间便于想象和作图说明。设矩阵A=[124135]\pmb{A}
- 对比度调整操作
weixin_51302377
深度学习人工智能计算机视觉算法
对比度调整是一种常见的图像处理操作,用于增强或减弱图像中不同颜色或亮度之间的差异,使图像的细节更加清晰或柔和。以下是关于对比度调整操作的详细介绍:原理对比度是指图像中最亮和最暗区域之间的差异程度。对比度调整通过改变图像中像素值的分布来实现。一般来说,增加对比度会使亮的部分更亮,暗的部分更暗,从而增强图像的层次感和细节;降低对比度则会使图像的亮度分布更加均匀,减少图像的层次感。在数学上,对比度调整通
- CCF-CSP真题202206-归一化处理/寻宝大冒险
chaser&upper
一研为定Algorithm算法c++
CCF-CSP真题202206归一化处理寻宝大冒险Rederence归一化处理数学题:直接计算平均值、方差、按公式计算即可!7-42930-22126541000-0.74855103790736130.04504284674812264-0.7378629047806881-0.7966476369773906-0.70579850540066861.00964686143037751.9341
- Hu矩的原理及应用
Ring__Rain
算法人工智能机器学习
什么是Hu矩Hu矩是一种描述图像形状特征的数学工具,核心思想:提取图像的形状信息,并对这些信息进行归一化,使得它们对图像的平移、旋转和缩放具有不变性。简单说,Hu矩就是一串数字,这串数字可以唯一的描述图像的形状特征,而且不管图像怎么移动、旋转和缩放,这组数字都不变。Hu矩的原理1,几何矩:图像的像素值的加权和,可以用来描述图像的形状。如:零阶矩(面积):图像中所有像素值的总和;一阶矩(质心):图像
- [总结] 音视频开发工程师之路
二进制怪兽
音视频音视频
前言音视频开发是一个涉及多个技术领域的复杂方向,涵盖了音频处理、视频渲染、编解码技术、流媒体传输等多个方面。以下是一个简要的学习路线指南,帮助你逐步掌握音视频开发的核心技能。基础知识计算机科学基础:掌握操作系统、计算机网络、数据结构和算法等基础知识。数学基础:了解傅里叶变换、线性代数、信号处理等数学知识,这些是音视频编-解码和处理的基石。编程语言:熟练掌握C/C++,这是音视频开发中最常用的语言;
- ColD Fusion,分布式多任务微调的协同 “密码”
人工智能
ColDFusion,分布式多任务微调的协同“密码”发布时间:2025-02-19近日热文:1.全网最全的神经网络数学原理(代码和公式)直观解释2.大模型进化史:从Transformer到DeepSeek-R1的AI变革之路3.2W8000字深度剖析25种RAG变体:全网最全~没有之一知乎【柏企】公众号【柏企科技说】【柏企阅文】在预训练模型的基础上进行改进,有望提升所有基于它微调的模型性能。然而,
- 【AI中数学-信号处理】信号的清道夫:精通信号过滤技巧
云博士的AI课堂
AI中的数学人工智能信号处理高频去噪带通滤波滤波处理信号过滤机器学习
第3节信号的清道夫:精通信号过滤技巧在信号处理中,过滤技术是一项至关重要的工具。通过对信号的处理与过滤,我们能够去除不必要的成分,如噪声、干扰等,从而提高信号质量,增强其后续处理效果。在本节中,我们将介绍三种实际应用中常用的精通信号过滤技巧,包括基于小波变换的信号分离、带通滤波在心电图分析中的应用,以及图像中的高频噪声去除技术。通过这些案例,我们将深入探讨信号过滤在不同领域中的应用。案例1:基于小
- Java程序员面临抉择:激烈竞争下,转行大模型或是新出路,非常详细收藏我这一篇就够了!
大模型教程
大模型学习学习大模型语言模型人工智能程序员转行
Java程序员转行大模型领域,可以依据以下详细路线进行学习和职业转换:第1阶段:基础知识巩固数学基础:线性代数:矩阵运算、向量空间等。概率论与统计:概率分布、统计推断等。微积分:导数、积分、多变量函数等。Python编程:Python基础:数据类型、控制结构、函数等。Python进阶:面向对象编程、装饰器、生成器等。数据处理:NumPy、Pandas、Matplotlib。第2阶段:机器学习与深度
- AI大模型对决:DeepSeek与Grok 3,谁才是真王者?
广拓科技
人工智能
(一)性能对比在性能方面,Grok3和DeepSeek各有千秋。在数学任务的AIME'24数学能力测试中,Grok3取得了52分,而DeepSeek-V3仅获得39分,Grok3展现出更强的数学推理能力;在GPQA科学知识评估中,Grok3以75分领先于DeepSeek-V3的65分,在科学专业知识的理解和应用上更胜一筹。在编程任务中,Grok3的表现也较为出色,能够生成逻辑清晰、效率较高的代码,
- Python-集合基础的详细讲解
何等样仁
python数据结构
1.集合(set)的概述:Python中的集合与数学中集合(set)差不多一致,也是用于保存不重复的元素。它有可变集合(set)和不可变集合(frozenset)两种,在python中用到集合,多半是使用到了他的唯一性,或者是集合可加减性,不用怀疑。同样在自己写代码时如果要用到上面的也可以考虑来提高效率.2.集合操作:2.1集合的创建:Python中提供了两种集合创建方式,第一种是字面量形式的创建
- AI架构师必知必会系列:强化学习在金融领域的应用
AI天才研究院
AI实战AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录AI架构师必知必会系列:强化学习在金融领域的应用1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系1.强化学习交易系统的总体架构2.强化学习模型训练流程3.强化学习风控系统架构3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1Q学习3.1.2REINFORCE3.1.3A3C3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式
- 青少年编程与数学 02-009 Django 5 Web 编程 19课题、RESTful API开发
明月看潮生
编程与数学第02阶段青少年编程django编程与数学pythonrestful
青少年编程与数学02-009Django5Web编程19课题、RESTfulAPI开发一、RESTfulAPI核心概念特点设计原则应用场景优势挑战二、DRF核心特性使用场景优势示例代码安装DRF配置项目定义模型创建序列化器创建视图配置URLs三、创建API步骤1:创建Django项目和应用步骤2:安装DjangoRESTFramework步骤3:配置项目步骤4:定义模型步骤5:创建序列化器步骤6:
- 青少年编程与数学 02-009 Django 5 Web 编程 23课题、安全性
明月看潮生
编程与数学第02阶段青少年编程django编程与数学python网络安全
青少年编程与数学02-009Django5Web编程23课题、安全性一、安全性安全性的定义安全性的关键方面安全性的实现方法安全性的挑战安全性的最佳实践二、安全漏洞1.注入漏洞2.跨站脚本(XSS)漏洞3.跨站请求伪造(CSRF)漏洞4.不安全的认证和会话管理5.安全配置错误6.不安全的反序列化7.使用含有已知漏洞的组件8.文件上传漏洞9.缓存区溢出10.信息泄露防范措施三、Django项目的安全性
- 用deepseek学大模型08-长短时记忆网络 (LSTM)
wyg_031113
lstm人工智能rnn
deepseek.com从入门到精通长短时记忆网络(LSTM),着重介绍的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。从入门到精通长短时记忆网络(LSTM)参考:长短时记忆网络(LSTM)在序列数据处理中的优缺点分析1.LSTM核心机制LSTM通过门控机制(遗忘门、输入门、输出门)和细
- 《人工智能所需的数学基础》:开启AI领域的数学之旅
杨焕月Great
《人工智能所需的数学基础》:开启AI领域的数学之旅【下载地址】人工智能所需的数学基础人工智能所需的数学基础欢迎来到《人工智能所需的数学基础》资源页面项目地址:https://gitcode.com/open-source-toolkit/2af1b项目介绍在人工智能(AI)的广阔天地中,数学是不可或缺的基石。《人工智能所需的数学基础》资源包正是为了帮助那些渴望深入AI领域的学习者,提供一套系统、全
- 用deepseek学大模型08-卷积神经网络(CNN)
wyg_031113
机器学习人工智能
yuanbao.tencent.com从入门到精通卷积神经网络(CNN),着重介绍的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。一、目标函数与损失函数数学推导1.均方误差(MSE)标量形式:E(w)=12∑i=1N(yi−y^i)2E(\mathbf{w})=\f
- VTK知识学习(32)-图像运算
无所谓จุ๊บ
VTK学习VTK
1、数学运算vklmageMathematics提供了基本的一元和二元数学操作。根据不同的操作,需要一个或者两个输入图像。二元数学操作要求两个输入图像具有相同的像素数据类型和颜色组分。当两个图像大小不同时,输出图像的范围为两个输入图像范围的并集,并且原点和像素间隔与第一个输入图像保持一致。privatevoidTestMathematics(){//绘制一个暗红色矩形vtkImageCanvasS
- 【人工智能】AI现状分析 || 神经网络的数学基础 || 人工智能交叉领域的发展和技术应用 || 附:小白入门人工智能 学习步骤
追光者♂
Python从入门到人工智能百题千解计划(项目实战案例)人工智能交叉领域神经网络的数学基础AI现状分析
声明:仅学习使用~资料整理分析不易,点个赞吧!目录1.AI现状分析(人工智能基础入门概念)1.1人工智能基础概念1.2人工智能的技术发展路线1.3产业发展的驱动因素1.4人工智能薪资岗位介绍2.神经网络的数学基础2.1神经网络的生物表示2.2神经网络的数学表示2.3神经网络必备的一些数学基础2.3.1Sigmoid函数2.3.2偏置2.4总结3.人工智能交叉领域的发展和技术应用3.1人工智能应用交
- 一文读懂!深度学习 + PyTorch 的超实用学习路线
a小胡哦
深度学习pythonpytorch
深度学习作为人工智能领域的核心技术,正深刻改变着诸多行业。PyTorch则是深度学习实践中备受青睐的框架,它简单易用且功能强大。下面就为大家详细规划深度学习结合PyTorch的学习路线。一、基础知识储备数学基础数学是很重要的!!!线性代数、概率论与数理统计、微积分是深度学习的数学基石。熟悉矩阵运算、概率分布、梯度计算等概念,能帮助理解深度学习模型的原理。例如,在神经网络中,矩阵乘法用于神经元之间的
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>