形如hdu 5381:点击打开链接
使用莫队需要满足的条件:
1、询问之间必须互不影响,是独立的。
2、询问必须是一个区间,不能有别的因子,也就是必须形如 l, r。
莫队是干什么的:
把询问: [1,3] [2,2] [3,5] [2,4] 排序,排序的结果就是得到一棵树,树上的每个节点对应着一个询问。
维护一个区间,然后dfs这棵树,用这个区间在树上移动,通过给区间增加(删除)一段区间使得旧区间变成当前访问的区间。
我需要做什么:
完成两个函数:增加一个区间: add(int l, int r){},删除一个区间: del(int l, inr){}
注意:
1、如果当前区间是空的,即l > r, 那么新增加的点需要特殊处理。
2、add(int l, int r), del的函数复杂度必须为 O(r-l)
3、莫队模板的复杂度:O(query*log(query))
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <stdio.h> #include <iostream> #include <algorithm> #include <sstream> #include <stdlib.h> #include <string.h> #include <limits.h> #include <vector> #include <string> #include <time.h> #include <math.h> #include <iomanip> #include <queue> #include <stack> #include <set> #include <map> const int inf = 1e9; const double eps = 1e-8; const double pi = acos(-1.0); template <class T> inline bool rd(T &ret) { char c; int sgn; if (c = getchar(), c == EOF) return 0; while (c != '-' && (c<'0' || c>'9')) c = getchar(); sgn = (c == '-') ? -1 : 1; ret = (c == '-') ? 0 : (c - '0'); while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0'); ret *= sgn; return 1; } template <class T> inline void pt(T x) { if (x < 0) { putchar('-'); x = -x; } if (x > 9) pt(x / 10); putchar(x % 10 + '0'); } using namespace std; const int N = 1e5 + 10; typedef long long ll; typedef pair<int, int> pii; template <class T> inline T gcd(T a, T b) { if (a > b)swap(a, b); while (a)b %= a, swap(a, b);return b; } vector<int>G[N]; int l[N], r[N]; class MST { struct Edge { int from, to, dis; Edge(int _from = 0, int _to = 0, int _dis = 0) :from(_from), to(_to), dis(_dis) {} bool operator < (const Edge &x) const { return dis < x.dis; } }edge[N << 3]; int f[N], tot; int find(int x) { return x == f[x] ? x : f[x] = find(f[x]); } bool Union(int x, int y) { x = find(x); y = find(y); if (x == y)return false; if (x > y)swap(x, y); f[x] = y; return true; } public: void init(int n) { for (int i = 0; i <= n; i++)f[i] = i; tot = 0; } void add(int u, int v, int dis) { edge[tot++] = Edge(u, v, dis); } ll work() {//计算最小生成树,返回花费 sort(edge, edge + tot); ll cost = 0; for (int i = 0; i < tot; i++) if (Union(edge[i].from, edge[i].to)) { cost += edge[i].dis; G[edge[i].from].push_back(edge[i].to); G[edge[i].to].push_back(edge[i].from); } return cost; } }mst; struct Point {//二维平面的点 int x, y, id; bool operator < (const Point&a) const { return x == a.x ? y < a.y : x < a.x; } }p[N]; bool cmp_id(const Point&a, const Point&b) { return a.id < b.id; } class BIT {//树状数组 int c[N], id[N], maxn; int lowbit(int x) { return x&-x; } public: void init(int n) { maxn = n + 10; fill(c, c + maxn + 1, inf); fill(id, id + maxn + 1, -1); } void updata(int x, int val, int _id) { while (x) { if (val < c[x]) { c[x] = val; id[x] = _id; } x -= lowbit(x); } } int query(int x) { int val = inf, _id = -1; while (x <= maxn) { if (val > c[x]) { val = c[x]; _id = id[x]; } x += lowbit(x); } return _id; } }tree; inline bool cmp(int *x, int *y) { return *x < *y; } class Manhattan_MST { int A[N], B[N]; public: ll work(int l, int r) { for (int i = l; i <= r; i++)G[i].clear(); mst.init(r); for (int dir = 1; dir <= 4; dir++) { if (dir % 2 == 0)for (int i = l; i <= r; i++)swap(p[i].x, p[i].y); else if (dir == 3)for (int i = l; i <= r; i++)p[i].y = -p[i].y; sort(p + l, p + r + 1); for (int i = l; i <= r; i++) A[i] = B[i] = p[i].y - p[i].x; //离散化 sort(B + l, B + r + 1); int sz = unique(B + l, B + r + 1) - B; //初始化反树状数组 tree.init(sz); for (int i = r; i >= l; i--) { int pos = lower_bound(B + l, B + sz, A[i]) - B; int id = tree.query(pos); if (id != -1) mst.add(p[i].id, p[id].id, abs(p[i].x - p[id].x) + abs(p[i].y - p[id].y)); tree.updata(pos, p[i].x + p[i].y, i); } } for (int i = l; i <= r; i++)p[i].y = -p[i].y; return mst.work(); } }m_mst; int n, m, a[N]; ll ans[N], now; void add(int x, int y) { for (int i = x; i <= y; i++) { } } void del(int x, int y) { for (int i = x; i <= y; i++) { } } void dfs(int u, int fa) { if (fa != u) add(l[u], r[u]); else { if (l[u] < l[fa]) add(l[u], l[fa] - 1); if (r[u] > r[fa]) add(r[fa] + 1, r[u]); if (l[u] > l[fa]) del(l[fa], l[u] - 1); if (r[u] < r[fa]) del(r[u] + 1, r[fa]); } ans[u] = now; for (int v : G[u]) if (v != fa)dfs(v, u); if (fa != u) { if (l[u] > l[fa]) add(l[fa], l[u] - 1); if (r[u] < r[fa]) add(r[u] + 1, r[fa]); if (l[u] < l[fa]) del(l[u], l[fa] - 1); if (r[u] > r[fa]) del(r[fa] + 1, r[u]); } } int main() { rd(n); for (int i = 1; i <= n; i++)rd(a[i]); rd(m); for (int i = 1; i <= m; i++) { rd(p[i].x); rd(p[i].y); p[i].id = i; l[i] = p[i].x; r[i] = p[i].y; } m_mst.work(1, m); dfs(1, 1); for (int i = 1; i <= m; i++)pt(ans[i]), puts(""); return 0; }