- 强连通分量——tarjan算法缩点
小陈同学_
图论算法图论c++
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 强连通分量-tarjan算法缩点
小陈同学_
算法图论数据结构
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- POJ 2117 Electricity 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:POJ2117Electricity题目描述:给定一张无向图,问删除一个结点后最多会有多少个强连通分量。题解:我们用scc表示初始的图中有多少个强连通分量,该值可以通过DFS计算出来。接下来我们只需要计算出删除每个割点会增加的强连通分量个数cnt即可,答案即为cnt+ans,对于一个强连通分量中的非根结点,用son表示有多少个子结点能够返回到当前结点或者当前结点之前遍历的结点,那么不难发
- POJ 1523 SPF题解 Tarjan 割点
kaiserqzyue
算法题目c++算法图论
题目链接:POJ1523SPF题目描述:给定一张连通的无向图,问哪些结点是割点,分别删除各个割点时会产生几个强连通分量。题解:求割点可以通过Tarjan算法来解决,我们接下来考虑删除一个割点后会产生多少个联通块。在Tarjan算法中,我们判断一个点是否是割点是通过其子结点能否回到遍历过的结点来判断。如果当前遍历的结点存在一个子结点不能够回到已经遍历过的结点,那么当前遍历的结点便是一个割点(这样的依
- Luogu P5058 [ZJOI2004] 嗅探器 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:LuoguP5058[ZJOI2004]嗅探器题目描述:给定一张无向图,以及两个点s,t,你需要找到一个点(这个点不能是s或t),这个点被所有s,t之间的路径所经过。如果不存在这样的点,输出Nosolution。如果有多个这样的点,输出编号最小的。题解:我们很容易发现要删除的点一定是割点(按照题意,删除后,s与t不能进行通信,这说明强连通分量增加了)。我们只需要考虑哪些割点是满足条件的。
- 强连通分量(SCC,Strongly Connected Components)学习笔记 & edited in 2024.01.31
taoyiwei17_HNCS
学习笔记
更新日志upd2024.01.31写好文章基本内容upd2024.01.31发表于洛谷upd2024.02.01同步发表于CSDNupd2024.02.01同步发表于博客园cnblogsupd2024.02.01增加内容difficultPRO例题详解——P2746强连通分量(SCC,StronglyConnectedComponents)定义强连通有向图(DAG)中若其中两点xxx,yyy能彼此
- 强连通分量(dfs version)
yan_qiu_ynlchrz
算法整理算法
定义我们称有向图G=(V,E)G=(V,E)G=(V,E)是强连通的当且仅当对于GGG中任意两点u,vu,vu,v都存在一条uuu到vvv的路径和一条vvv到uuu的路径。如果G′G'G′为GGG的一个子图且G′G'G′是强连通的,则称G′G'G′是一个强连通子图。若G′G'G′满足极大性,则称G′G'G′是一个强连通分量。那么,如果我们将所有的强连通分量都缩成一个点,就可以得到一张DAGDAGD
- 算法竞赛——强连通分量
ThXe
ACM教程图论蓝桥杯ACM蓝桥杯ACM强连通分量
强连通分量强连通的定义是:有向图G强连通是指,G中任意两个结点连通。强连通分量(StronglyConnectedComponents,SCC)的定义是:极大的强连通子图也可以说,在强连图图的基础上加入一些点和路径,使得当前的图不在强连通,称原来的强连通的部分为强连通分量。DFS生成树DFS生成树是根据DFS搜索顺序构成的一颗生成树,形如(自上而下,自左而右):有向图的DFS生成树主要有4种边:树
- 图论 —— 图的连通性 —— Kosaraju 算法
Alex_McAvoy
#图论——图的连通性
【概述】Kosaraju算法是最容易理解,最通用的求强连通分量的算法,其关键的部分是同时应用了原图G和反图GT。【基本思想】1.对原图G进行DFS搜索,计算出各顶点完成搜索的时间f2.计算图的反图GT,对反图也进行DFS搜索,但此处搜索时顶点的访问次序不是按照顶点标号的大小,而是按照各顶点f值由大到小的顺序3.反图DFS所得到的森林即对应连通区域。原图原图进行DFS反图反图进行DFS上面提及原图G
- 图论(三):DFS的应用——拓扑排序与强连通分量
Sunburst7
算法图论
本节介绍如何使用DFS对有向无环图进行拓扑排序,以及求强连通分量的算法。目录一拓扑排序二拓扑排序的实现三强连通分量参考一拓扑排序什么是拓扑排序呢?对于一个有向无环图G=(V,E),拓扑排序是G中所有结点的一种线性次序,满足:如果图G包含边(u,v),则结点u在拓扑排序中处于结点v的前面。拓扑排序可以理解为一系列要处理的事件的先后的顺序。边(u,v)代表完成v必须先完成u。注意的是:如果图G包含环路
- 2.4总结
哥别敲代码了
寒假预备役学习算法学习数据结构
前几天把洛谷有关并查集几个题目都尝试写了一下,自己提前去了解了一下最短路径(Floyed算法)和强连通分量这一方面的内容便于后续学习。连通(顾名思义就是把几个点相连,既可以从a到b,也可以从b到a(无向图))强连通示例图弱连通示例图下面这图里就有着三个强连通分量:把三个分量各自可以看成一个点,进行度的运算最短路径(Floyed算法)在写题的时候总是会遇见这种求最短路径的题,所以提前学习了一下(主要
- 数据结构之图
忆梦九洲
数据结构图无环图与有向无环图按存储路径方向分类按存储结构分类
图图(Graph)是比树还要难以理解和学习的“多对多”数据结构,可以认为树也是图的一种。图的知识点众多,按照存储路径的方向分,可分为无向图和有向图,按照图的存储结构分,可分为完全图与有向完全图、连通图与强连通图、连通分量与强连通分量、无环图与有向无环图,其涉及的算法则包括克鲁斯卡尔算法、普里姆算法、迪杰斯特拉算法和弗洛伊德算法等。如下图所示为图的分类。与表和树相同,图虽然有“多对多”的逻辑关系,但
- Tarjan 算法思想求强连通分量及求割点模板(超详细图解)
harry1213812138
图论算法算法tarjan强连通分量割点割边
割点定义在一个无向图中,如果有一个顶点,删除这个顶点及其相关联的边后,图的连通分量增多,就称该点是割点,该点构成的集合就是割点集合。简单来说就是去掉该点后其所在的连通图不再连通,则该点称为割点。若去掉某条边后,该图不再连通,则该边称为桥或割边。若在图G中(如下图),删除uv这条边后,图的连通分量增多,则u和v点称为割点,uv这条边称为桥或割边。显然,有割点的图不是哈密尔顿图。Tarjan算法求强连
- Tarjan 算法及其应用
Kwjdefulgn
图论基础
Tarjan算法及其应用NO.1求强连通分量学习链接:https://www.cnblogs.com/shadowland/p/5872257.html学习心得:dfn[cur]记录访问cur结点的时间戳,low[cur]记录cur结点及其子树中时间戳最小是多少,严格意义上来讲low[cur],记录的是在不回头遍历父节点的前提下第一次能访问到的最早的已遍历结点的时间戳。显然当访问cur结点的子节点
- Tarjan算法
mrcrack
codeforces
Tarjan算法此文https://www.luogu.com.cn/blog/styx-ferryman/chu-tan-tarjan-suan-fa-qiu-qiang-lian-tong-fen-liang-post介绍不错,摘抄如下“tarjan陪伴强联通分量生成树完成后思路才闪光欧拉跑过的七桥古塘让你心驰神往”----《膜你抄》tarjan是一种求强连通分量、双连通分量的常用算法,其拓展
- Tarjan算法超超超详解(ACM/OI)(强连通分量/缩点)(图论)(C++)
seh_sjlj
OIC/C++算法
本文将持续更新。I前置芝士:深度优先搜索与边的分类首先我们来写一段基本的DFS算法(采用链式前向星存图):boolvis[MAXN];voiddfs(intu){vis[u]=true;for(inte=first[u];e;e=nxt[e]){//遍历连接u的每条边intv=go[e];if(!vis[v])dfs(v);//如果没有访问过就往下继续搜}}这段代码我们再熟悉不过了。接下来我们要引
- Tarjan算法与连通性
流苏贺风
图论算法算法dfs强联通图论
Tarjan算法Tarjan与有向图一、强连通定义二、Tarjan算法求强连通分量2.tarjan的构成要素3.算法的分析4.算法的实现11,未被访问:22,被访问过,已经在栈中:5.算法的代码实物三,缩点四,实际应用Tarjan和无向图一,定义和性质二,割边(桥)和E-DCC11,模板22,实际应用三,割点11,概况22,实现四,V-DCC(点双联通分量)1,求v-dcc2,v-dcc特异性缩点
- 超级详细的Tarjan算法
ivysister
acm题tarjan最大连通分量
有向图强连通分量]在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(stronglyconnectedcomponents)。下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
- 常用图算法实现--Spark
zealscott
使用Spark实现PageRank,强连通分量等图算法PageRank数据准备边:1211523242526273134251151261676871788189810914911011013111211112113141412151网页:123456789101112131415将这两个文件放入HDFS:hdfsdfs-mkdirinput/PageRankhdfsdfs-putlinks.tx
- 算法设计与分析
羊驼冲冲冲
算法学习
目录三个渐进记号分治策略①迭代法②递归树法③主定理法分治的应用堆堆应用动态规划动态规划应用贪心算法贪心算法应用回溯法回溯法应用图图的遍历BFSDFS记录时间戳拓扑排序强连通分量最小生成树流网络NP、P摊还分析三个渐进记号f(n)=O(g(n))其实是代表f(n)∈O(g(n))渐近上界记号OO(g(n))={f(n):存在正常量c和n0,使得对所有n≥n0,有0≤f(n)≤cg(n)}渐近下界记号
- 【C - 班长竞选】
贝耶儿
题意:大学班级选班长,N个同学均可以发表意见若意见为AB则表示A认为B合适,意见具有传递性,即A认为B合适,B认为C合适,则A也认为C合适勤劳的TT收集了M条意见,想要知道最高票数,并给出一份候选人名单,即所有得票最多的同学。思路:从图中找出所有强连通分量进行缩点,那么首先某一个强连通分量中的人获得了该强连通分量中节点数目减一得票数。他们还会获得其他与之相连的强连通分量的票数。计算出每个节点对应的
- Tarjan-vDCC,点双连通分量,点双连通分量缩点
EQUINOX1
数据结构与算法算法c++数据结构职场和发展深度优先
前言双连通分量是无向图中的一个概念,它是指无向图中的一个极大子图,根据限制条件可以分为边双连通分量和点双连通分量,欲了解双连通分量需先了解Tarjan算法,以及割点割边的概念及求解。本篇博客介绍点双连通分量的相关内容。前置知识学习点双连通分量前,你需要先了解:关于Tarjan:SCC-Tarjan算法,强连通分量算法,从dfs到Tarjan详解-CSDN博客关于缩点:SCC-Tarjan,缩点问题
- Tarjan-eDcc,边双连通分量问题,eDcc缩点问题
EQUINOX1
数据结构与算法图论数据结构c++算法
文章目录前言前置知识边双连通分量的定义推论Tarjan算法求解eDcc搜索树强连通分量的根时间戳追溯值算法原理算法流程代码实现eDcc缩点问题OJ详解题目描述原题链接思路分析AC代码前言双连通分量是无向图中的一个概念,它是指无向图中的一个极大子图,根据限制条件可以分为边双连通分量和点双连通分量,欲了解双连通分量需先了解Tarjan算法,以及割点割边的概念及求解。本篇博客介绍边连通分量的相关内容。前
- SCC-Tarjan,缩点问题
EQUINOX1
算法c++数据结构图搜索算法动态规划
文章目录前言引例什么是缩点?缩点的应用一、合并强连通子图为强连通图题目描述输入/输出格式原题链接题目详解二、集合间偏序关系题目描述输入/输出格式原题链接题目详解三、最大点权和路径题目描述输入/输出格式原题链接题目详解其他OJ练习前言图论中的缩点问题通常是指在有向图中,通过将强连通分量内的所有节点缩成一个节点,从而简化图的结构,这个过程称为缩点。这样做可以帮助我们分析和解决一些实际问题。阅读本文前如
- SCC-Tarjan算法,强连通分量算法,从dfs到Tarjan详解
EQUINOX1
数据结构与算法算法深度优先开发语言c++数据结构
文章目录前言定义强连通强连通分量Tarjan算法原理及实现概念引入搜索树有向边的分类强连通分量的根时间戳追溯值算法原理从深搜到TarjanTarjan算法流程Tarjan算法代码实现OJ练习:前言强连通分量是图论中的一个重要概念,它在许多领域都有广泛的应用,如网络路由中识别环路,社交网络分析,编译器优化识别出代码中的循环结构,图像处理中识别出图像中的连通区域,从而进行图像分割和特征提取等。因而了解
- 数据结构—图的定义及基本术语
turbo夏日漱石
数据结构与算法数据结构
目录图的定义图的基本术语(1)子图:(2)无向完全图和有向完全图:(3)稀疏图和稠密图:(4)权和网:(5)邻接点:(6)度、入度和出度:(7)路径和路径长度:(8)回路或环:(9)简单路径、简单回路或简单环:(10)连通、连通图和连通分量:(11)强连通图和强连通分量:(12)连通图的生成树:(13)有向树和生成森林:图的定义图(Graph)G由两个集合V和E组成,记为G=(VE)1、其中V是顶
- 数据结构复盘——第六章:图
时生丶
数据结构数据结构图论
文章目录第一部分:图的一些专业术语1、有向图和无向图2、简单图和多重图3、完全图(也称简单完全图)4、稠密图和稀疏图5、邻接点6、连通,连通图和连通分量7、强连通,强连通图和强连通分量8、路径,路径长度和回路9、简单路径和简单回路10、距离11、生成树和生成森林12、子图13、度,入度和出度14、有向树15、权和网第二部分:图的存储方式1、邻接矩阵2、邻接表3、邻接多重表4、十字链表第二部分习题第
- 【算法每日一练]-图论(保姆级教程篇11 tarjan模板篇)无向图的桥 #无向图的割点 #有向图的强连通分量
亦歌希望你变强啊
图论图论算法深度优先数据结构c++
目录预备知识模板1:无向图的桥模板2:无向图的割点模板3:有向图的强连通分量讲之前先补充一下必要概念:预备知识无向图的【连通分量】:即极大联通子图,再加入一个节点就不再连通(对于非连通图一定两个以上的连通分量)无向图的【(割边或)桥】:即去掉该边,图就变成了两个连通子图无向图的【割点】:将该点和相关联的边去掉,图将变成两个及以上的子图注意:有割点不一定有桥,但是有桥一定有割点无向图的【边双连通图】
- 2023/5/30---个人总结---Tarjan算法
priority_key
算法
Tarjan算法Tarjan算法是基于深度优先搜索的算法,用于求解图的连通性问题。用途:Tarjan算法可以在线性时间内求出无向图的割点与桥,进一步地可以求解无向图的双连通分量;同时,也可以求解有向图的强连通分量、必经点与必经边。其中需要两个重要的数组low,dfn。dfn:作为这个点搜索的次序编号(时间戳),简单来说就是第几个被搜索到的。low:追溯值---(用来表示从当前节点x作为搜索树的根节
- java实现求有向图的强连通分量
时(^ω^)人‡
dfs算法java图搜索算法
求解方法:求出该图的转置(所有边反向)求出转置图的拓扑排序(如何求拓扑排序看出可以看我上一篇博文。文章链接)根据拓扑排序的顶点顺序使用深度优先算法进行图搜索,一次搜索到的新的顶点的集合(上次遍历过的顶点不算)为一个强连通分量。代码:importjava.util.ArrayList;importjava.util.HashSet;importjava.util.Scanner;/*求解强连通分量*
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin