思路:求从S->T的次短路,不同的是,每条路是可以重复走的;那么在更新的时候就要注意下了;
可以设dis[i][0] 是S->i 的当前最短路,dis[i][1]是S->i的当前次短路;然后用优先队列维护这个性质;
typedef pair<int,int> ii;
queue<ii> que;//小的优先
node u = que.top();
que.pop();
u.first + w<a,b> 可以更新S->i的当前最短路权的话,也能改变S->i的当前次短路权,同时更新,然后加入队列;
u.first + w<a,b> 只能更新当前次短的话,就只更新次短,然后介入队列;
题目链接
/***************************************** Author :Crazy_AC(JamesQi) Time : File Name : *****************************************/ #include <iostream> #include <algorithm> #include <string> #include <stack> #include <queue> #include <vector> #include <map> #include <set> #include <stdio.h> #include <string.h> #include <math.h> #include <stdlib.h> #include <limits.h> using namespace std; #define FILL(a,b) memset(a,b,sizeof a) #define CLR(a) memset(a,0,sizeof a) #define mk make_pair template<class T> inline T Get_Max(const T&a,const T&b) {return a < b?b:a;} template<class T> inline T Get_Min(const T&a,const T&b) {return a < b?a:b;} const int inf = 0x3f3f3f3f; const int maxn = 5555; const int maxm = 555555; struct Edge{ int to,w,next; Edge(int a = 0,int b = 0,int c = 0) { to = a; w = b; next = c; } }E[maxm]; typedef pair<int,int> ii; int head[maxn],n,m,e_cnt; int dis[maxn],length[maxn];//最短,次短 inline void Add_Edge(int u,int v,int w) { E[e_cnt].to = v; E[e_cnt].w = w; E[e_cnt].next = head[u]; head[u] = e_cnt++; } int Dijkstra() { FILL(dis,inf); FILL(length,inf); priority_queue<ii,vector<ii>,greater<ii> > que; que.push(mk(0,1)); dis[1] = 0; while(!que.empty()) { ii tmp = que.top(); que.pop(); int u = tmp.second; // cout << "dis = " << dis[u] << endl; for (int i = head[u];i != -1;i = E[i].next) { int v = E[i].to; int w = E[i].w; if (dis[v] > tmp.first + w) { length[v] = dis[v]; // cout << "length = " << length[v] << endl; dis[v] = w + tmp.first; que.push(mk(dis[v],v)); } else if (dis[v] != tmp.first + w && tmp.first + w < length[v]) { length[v] = tmp.first + w; que.push(mk(length[v],v));//提供了更新次短路的可能性->重复走; } // printf("length[%d] = %d\n",v,length[v]); } } return length[n]; } int main() { // freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int iCase = 0; int t; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&m); e_cnt = 0; FILL(head,-1); while(m--) { int u,v,w; scanf("%d%d%d",&u,&v,&w); Add_Edge(u,v,w); Add_Edge(v,u,w); } printf("Case %d: %d\n",++iCase,Dijkstra()); } return 0; }