- 整数快速幂 & 快速幂取模
野村乔叟
关于快速幂的较为详细叙述https://www.jianshu.com/p/ec0b97676c3e
- AcWing--互质数的个数-->数论(欧拉函数)
芝士小熊饼干
ACWing算法python欧拉函数
AcWing4968.互质数的个数-AcWing(python)#输入a,b=map(int,input().split())mod=998244353#快速幂取模模板:defqmi(a,b):res=1while(b):if(b&1):res=res*a%moda=a*a%modb>>=1returnres#欧拉函数#质因数#判断特例if(a==1):print(0)else:res=ax=a#
- 模板 | 整数快速幂 & 快速幂取模
0与1的邂逅
快速幂:所谓的快速幂,其目的是为了快速求幂,将时间复杂度从朴素算法的降到。假如现在要求,按照朴素算法,就是将a连乘b次,时间复杂度为,即级别。代码如下:【a^b的朴素算法】//O(n)#include//a^b的朴素算法intpow(inta,intb){intans=1;while(b){ans*=a;b--;}returnans;}intmain(){inta,b;scanf("%d%d",&
- ElGamal加密与解密——gmp库c++实现
201710
先讲一下ElGamal密码体制:公开全局量q素数aa#include#include#include#includeusingnamespacestd;//快速幂取模运算。简单参考另一篇文章用大数实现RSA选择密文攻击(可以直接用gmp库的函数mpz_powm())mpz_classfun(constmpz_classexponent,constmpz_classbase,constmpz_cla
- (sdau) Summary of the eleventh week.(数论)
Lily-
sdau程序竞赛周结记录
数论基本概念:一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基本概念解析1、整除性若a和b都为整数,a整除b是指b是a的倍数,a是b的约数(因数、因子),记为a|b。整除的大部分性质都是显而易见的,为了
- 快速幂及快速幂取模运算
由原
快速幂原文快速幂这个东西比较好理解,但实现起来到不老好办,记了几次老是忘,今天把它系统的总结一下防止忘记。首先,快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别,快速幂能做到O(logn),快了好多好多。它的原理如下:假设我们要求a^b,那么其实b是可以拆成二进制的,该二进制数第i位的权为2^(i-1),例如当b==11
- 数论
weixin_30381317
c/c++数据结构与算法
目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b.筛选法
- 除等数论
じ☆夏妮国婷☆じ
算法除等数论
除等数论目录一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗转相除法)2、扩展欧几里德定理a.线性同余b.同余方程求解c.逆元3、中国剩余定理(孙子定理)4、欧拉函数a.互素b
- 初等数论
YinJianxiang
数论
转自:http://cppblog.com/menjitianya/archive/2015/12/02/212395.html一、数论基本概念1、整除性2、素数a.素数与合数b.素数判定c.素数定理d.素数筛选法3、因数分解a.算术基本定理b.素数拆分c.因子个数d.因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余a.模运算b.快速幂取模c.循环节二、数论基础知识1、欧几里德算法(辗
- 八、快速幂--Java实现
时间邮递员
数据结构与算法算法数据结构
文章目录一、快速幂二、快速幂取模一、快速幂publicstaticintpow(inta,intb){intans=1;intbase=a;while(b!=0){if((b&1)==1)ans*=base;base*=base;b>>=1;}returnans;}二、快速幂取模publicstaticintpow_mod(inta,intb,intc){intans=1;intbase=a%c;
- 北京化工大学2021年ACM寒假专题训练(一)(Python版)
Duizhuo
python
北京化工大学2021年ACM寒假专题训练(一)问题A:a^bPython的pow()pow(a,b)返回的值,pow(a,b,p)则返回的值,所以直接print(pow(a,b,p))就可以了分析作为一个算法竞赛萌新,,我首先想到的是直接计算么,先算s=a^b,再算s%p,不就OK了,直接print(a**b%p)不就可以,但是当a,b,p很大时,运算超时了,这种方法是不可取的,这里需要快速幂取模
- 夜深人静写算法(三)- 初等数论入门
英雄哪里出来
夜深人静写算法算法线性同余初等数论ACM数学
文章目录一、前言二、数论基本概念1、整除性2、素数1)素数与合数2)素数判定3)素数定理4)素数筛选法3、因数分解1)算术基本定理2)素数拆分3)因子个数4)因子和4、最大公约数(GCD)和最小公倍数(LCM)5、同余1)模运算2)快速幂取模3)循环节二、数论基础知识1、欧几里德定理(辗转相除)2、扩展欧几里德定理1)线性同余2)同余方程求解3)逆元3、中国剩余定理4、欧拉函数1)互素2)筛选法求
- UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)
weixin_34290000
CarmichaelNumbersAnimportanttopicnowadaysincomputerscienceiscryptography.Somepeopleeventhinkthatcryptographyistheonlyimportantfieldincomputerscience,andthatlifewouldnotmatteratallwithoutcryptography.A
- LeetCode 372. Super Pow解题思路(超详细)
beyond702
LeetCode
这道题实际上是考察快速幂,所谓的快速幂,实际上是快速幂取模的缩写,简单的说,就是快速的求一个幂式的模(余)。在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快、计算范围更大的算法,产生了快速幂取模算法。我们先从简单的例子入手:求。算法1.首先直接地来设计这个算法:intans=1;for(inti=1;i0){if(b%2==1)ans=(ans*a)%c;b=b/2;a=(a*a
- 快速幂取模(c++实现)
码非
模板
快速幂取模就是快速的求一个幂式的模(余)。下面给出c++语言实现abmodc=(amodc)cmodc;/*以求13^13%10为例*/#includeusingnamespacestd;longlongpow_mod(longlonga,longlongi,longlongn){if(i==0)return1%n;inttemp=pow_mod(a,i>>1,n);temp=temp*temp%
- 【洛谷刷题】--分治思想-快速幂取模
wxq_1993
#洛谷刷题
使用快速幂,时间复杂度在log2(p)。原理:(1)如果将a自乘一次,就会变成a^2。再把a^2自乘一次就会变成a^4。然后是a^8……自乘n次的结果是a^{2^{n}}。对吧……(2)a^xa^y=a^{x+y}=ax+y,这个容易。(3)将b转化为二进制观看一下:比如b=(11)10就是(1011)2。从左到右,这些11分别代表十进制的8,2,18,2,1。可以说a^{11}=a^8×a^2×
- 麦森数(洛谷P1045题题解,Java语言描述)
进阶的JFarmer
##Algorithm-LuoGu算法javaalgorithm编程语言
题目要求题目链接分析这题挺经典的,快速幂取模算法,如果求出大数再取模就可能T掉。之前有篇文章写了这个算法:《快速幂算法详解&&快速幂取模算法详解》既然是Java,那就要使用出Java的特点!BigInteger还在呢,都不必手写快速幂。记住,哪怕是使用快速幂的pow再mod也会炸,所以使用modPow(),直接把模求出来。你可能会怀疑,(2P−1)mod(10500)(2^{P}-1)mod(10
- 大数取模:一般取模 + 技巧取模 + 快速幂取模 + 欧拉函数(费马小定理) 附简单题解
bool_memset
介绍四种取模方法前,先了解一下真正意义的大数取模;设mod=1e9+7;现在给出一个超大的数,不是一般的大哦,假设这个数的位数是400位吧;那么直接去取模结果是会出错的,下面分析一下;问题分析:(1)大数存储:由于x的位数最大为400位,我们不能用现有的int,long,longlong,double等数据类型进行存储。一般存储大数的方法是用一个字符串来表示。(2)取模运算:模拟手算竖式的方法。用
- Python实现快速幂取模
whattress
算法
Python实现快速幂取模网上关于python实现算法的题很少,协会又叫自己写一写新生赛题解,我就来试一试,走上这条不归路。显然,这个题大佬来写题解:“水题,下一个”但是,我们还是来看一看。首先,看到999999999就知道这个题直接杠肯定TLE,所以我们用快速幂取模。快速幂是什么?就是a^b=(a*a)^(b/2)。取模还要用到一个公式(ab)%c=[(a%c)(b%c)]%c以下为证明a%c=
- 快速幂取模总结
Aerolite坠落
数学
大白书上说的是模运算。。而且给出了递归版的代码。。我觉得还是非递归的好。。而且加上了位运算,速度更快。下面是快速幂取模模板。模板:LLquickpow(LLn,LLm,intmod){LLans=1;while(m>0){if(m&1)ans=ans*n%mod;m>>=1;n=n*n%mod;}returnans;}练习题目:HDU1061hdu2035
- 快速幂 + 快速幂取模
WA-Accepted
数论
文章目录【快速幂】1.原理2.代码【快速幂取模】代码【例题】LeetCode50.Pow(x,n)HDU6182AMathProblem(卡精度)HDU5363KeySet(二项式定理)AcWing875.快速幂(模板)POJ1995RaisingModuloNumbers洛谷P1226快速幂||取余运算(模板)AcWing1289.序列的第k个数洛谷P3197越狱(容斥)【快速幂】快速幂就是快速
- 快速幂取模
While.True
次方求模时间限制:1000ms|内存限制:65535KB难度:3描述求a的b次方对c取余的值输入第一行输入一个整数n表示测试数据的组数(nlonglongpowmod(longlonga,longlongb,longlongc){intsum=1;a=a%c;while(b>0){if(b%2==1)//判断是否是奇数,是奇数的话将多出来的数事先乘如sumsum=(sum*a)%c;b/=2;a=
- 关于快速幂取模的两个算法
ICDI
关于这个问题,它的核心就是(a*b)%n=(a%n*b%n)%n那么下面给出自己写的两个算法:llmodexp(lla,llx,lln){llret=1;lltemp=a;while(b){if(x&0x1)ret=ret*temp%n;temp=temp*temp%n;x>>=1;}returnret;}//递归计算,注意一些边界条件voidexpmod(inta,intb,intn,int&a
- 数论初步之快速幂取模
AledaLee
数学概念与方法
快速幂的写法完全是我自己完成的哦,你们不要跟我强功,呵呵,其实是自己找不到,呵呵;没事自己写的感觉还不错呢.快速幂取模就是用到了线性取模,呵呵.很简单的,.现在贴出我的代码:/**输入正整数a,n和m,输出a^n%m的值,a,n,m#include#include#include/**运用二分,也就是分治法,快速求幂;*/usingnamespacestd;longlongx=1;longlong
- 快速幂取余算法,洛谷P1226
fomoo
洛谷快速幂取模算法
这是洛谷普及的一道题目,其实就是个快速幂取模的模版。。。#includeusingnamespacestd;intfpm(inta,intb,intc){intans=1;intbase=a%c;//每次取模不影响结果的if(b==0)return1%c;//特判,任何数的0次幂都是1while(b){if(b&1)ans=(ans*base)%c;//用&判断奇偶数b=b>>1;//位运算,相当
- 【代码超详解】洛谷 P4718 【模板】Pollard-Rho算法(要求一并使用:快速幂取模、快速积取模、Miller-Rabin算法)
山上一缕烟
ACM-ICPC详解
一、题目描述输入输出样例输入#16213134889712345676543211000000000000输出#1PrimePrime674146495说明/提示2018.8.14新加数据两组,时限加大到2s,感谢@whzztby@will7101二、算法分析说明与代码编写指导三、AC代码:1、这题采用__int128作为中间类型的快速幂取模配合Miller-Rabin算法比采用longdoubl
- C++ 快速幂取模算法
_Gion
快速求b^p%k的值.1模运算与乘法的性质乘积取模可以在乘之前先取模x*y%d=((x%d)*(y%d))%d;比如:a*a%c=((a%c)*(a%c))%c;2本题公式当b为偶数时:abmodc=((a2)b/2)modc当b为奇数时:abmodc=((a2)b/2×a)modc因此快速幂实际是分治算法,每次将b分一半,直到b=0;3实现1>递归实现#includeusingnamespace
- 大数取模:一般取模+技巧取模+快速幂取模+欧拉函数(费马小定理)
Senvenno27
C/C++数据结构与算法
一般取模运算(不推荐):(a^n)%m。我们可以改写为(a^n)%m=((a%m)^n)%m,即循环n次。缺点:低效,循环了n次。intexp_mod(inta,intn,intm){a=a%m;inttemp=1;while(n--){temp=temp*a;temp=temp%m;}returntemp;}第一种,技巧取模:(a^n)%10当n非常大时,嗯,只能用字符串存n的时候。简单分析一下
- 洛谷 P1226 快速幂取模 模板
shiyongyang
数论——快速幂
题目描述输入b,p,k的值,求b^pmodk的值。其中b,p,k*k为长整型数。输入输出格式输入格式:三个整数b,p,k.输出格式:输出“b^pmodk=s”s为运算结果输入输出样例输入样例#1:2109输出样例#1:2^10mod9=7#include#include#include#includeusingnamespacestd;longlongmod;longlongfast(longlo
- 快速幂取模
dizhuo0219
我们先从简单的例子入手:求abmodc=几。算法1.首先直接地来设计这个算法:intans=1;for(inti=1;i2#include3usingnamespacestd;4/*朴素算法*/5/*表示a的b次幂然后对c取余的结果*/6intpower1(inta,intb,intc)7{8intres=1;9for(inti=1;i>=1;24}25returnres;26}27intmain
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后