题目大意:求 n 个点的无向简单连通图个数, n≤1.3∗105
递推式: fi=2C2i−∑i−1j=1fj∗Cj−1i−1∗2C2i−j
推导戳这里
然后两侧同除 (i−1)! 得到:
fi(i−1)!=2C2i(i−1)!−∑i−1j=1fj∗2C2i−j(j−1)!∗(i−j)!
∑ij=1fj∗2C2i−j(j−1)!∗(i−j)!=2C2i(i−1)!
∑ij=1fj(j−1)!∗2C2i−j(i−j)!=2C2i(i−1)!
这显然是一个卷积的形式
然后我们令:
A=∑ni=1fi(i−1)!xi
B=∑ni=02C2ii!xi
C=∑ni=12C2i(i−1)!xi
那么有 A∗B=C
然后有 A≡C∗B−1(mod xn+1)
多项式求逆搞一搞就好了
没想到还真有人的FFT比我还慢2333
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 263000
#define MOD 1004535809
#define G 3
using namespace std;
int n,m;
long long Quick_Power(long long x,long long y)
{
long long re=1;
while(y)
{
if(y&1) (re*=x)%=MOD;
(x*=x)%=MOD; y>>=1;
}
return re;
}
void FFT(int a[],int n,int type)
{
static int temp[M];
int i;
if(n==1) return ;
for(i=0;i<n;i+=2)
temp[i>>1]=a[i],temp[i+n>>1]=a[i+1];
memcpy(a,temp,sizeof(a[0])*n);
int *l=a,*r=a+(n>>1);
FFT(l,n>>1,type);FFT(r,n>>1,type);
long long w=Quick_Power(G,(long long)(MOD-1)/n*type%(MOD-1)),wn=1;
for(i=0;i<n>>1;i++,(wn*=w)%=MOD)
temp[i]=(l[i]+wn*r[i])%MOD,temp[i+(n>>1)]=(l[i]-wn*r[i]%MOD+MOD)%MOD;
memcpy(a,temp,sizeof(a[0])*n);
}
void Get_Inv(int a[],int b[],int n)
{
static int temp[M];
int i;
if(n==1)
{
b[0]=Quick_Power(a[0],MOD-2);
return ;
}
Get_Inv(a,b,n>>1);
memcpy(temp,a,sizeof(a[0])*n);
memset(temp+n,0,sizeof(a[0])*n);
FFT(temp,n<<1,1);
FFT(b,n<<1,1);
for(i=0;i<n<<1;i++)
temp[i]=(long long)b[i]*(2-(long long)temp[i]*b[i]%MOD+MOD)%MOD;
FFT(temp,n<<1,MOD-2);
long long inv=Quick_Power(n<<1,MOD-2);
for(i=0;i<n;i++)
b[i]=temp[i]*inv%MOD;
memset(b+n,0,sizeof(a[0])*n);
}
int main()
{
static long long fac[M];
static int A[M],B[M],C[M],inv_B[M];
int i;
cin>>n;
for(m=1;m<=n;m<<=1);
for(fac[0]=1,i=1;i<=n;i++)
fac[i]=fac[i-1]*i%MOD;
for(i=0;i<=n;i++)
B[i]=Quick_Power(2,((long long)i*(i-1)>>1)%(MOD-1))*Quick_Power(fac[i],MOD-2)%MOD;
for(i=1;i<=n;i++)
C[i]=Quick_Power(2,((long long)i*(i-1)>>1)%(MOD-1))*Quick_Power(fac[i-1],MOD-2)%MOD;
Get_Inv(B,inv_B,m);
FFT(inv_B,m<<1,1);
FFT(C,m<<1,1);
for(i=0;i<m<<1;i++)
A[i]=(long long)inv_B[i]*C[i]%MOD;
FFT(A,m<<1,MOD-2);
long long inv=Quick_Power(m<<1,MOD-2);
for(i=1;i<=n;i++)
A[i]=A[i]*inv%MOD;
cout<<A[n]*fac[n-1]%MOD<<endl;
return 0;
}