POJ2253 Frogger

一.原题链接:http://poj.org/problem?id=2253

二.题目大意:青蛙要从0  号石头跳到1号石头,之间可以借助任意石头跳到1号,求在此过程中跳的每条总的路径中(从0到1)单次跳最大值  的最小值。

三.思路:一开始想不出,后来回去看了下Floyd,发现这个算法其实可以变形,它原本的递推公式是dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]),而这道题只要把其改为

dp[i][j] = min(dp[i][j], max(dp[i][k], dp[k][j]))就行了。

四代码:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <queue>

using namespace std;

const int MAX_SIZE = 202,
          INF = 1<<30,
          MOD = 1000000007;

struct Point
{
    double x, y;
};

Point pos[MAX_SIZE];
double graph[MAX_SIZE][MAX_SIZE];
int nodeNum;

double Floyd()
{
    int i, j, k;
    for(k = 0; k < nodeNum; k++)
        for(i = 0; i < nodeNum; i++)
        for(j = 0; j < nodeNum; j++)
            graph[i][j] = min(graph[i][j], max(graph[i][k], graph[k][j]));

    return graph[0][1];
}

int main()
{
    //freopen("in.txt", "r", stdin);
    int i, j, x, y, test = 1;

    while(cin>>nodeNum && nodeNum){
        memset(graph, 0, sizeof(graph));
        for(i = 0; i < nodeNum; i++)
            cin>>pos[i].x>>pos[i].y;

        for(i = 0; i < nodeNum; i++)
            for(j = i; j < nodeNum; j++)
                graph[i][j] = graph[j][i] =
                sqrt( (pos[i].x - pos[j].x)*(pos[i].x - pos[j].x) +
                      (pos[i].y - pos[j].y)*(pos[i].y - pos[j].y) );


        printf("Scenario #%d\nFrog Distance = %.3f\n\n", test++, Floyd());
    }
}

你可能感兴趣的:(POJ2253 Frogger)