- 根据序列推出不同二叉树的个数
ZYT_庄彦涛
数据结构数据结构栈序列
先序序列为a,b,c,d的不同二叉树的个数是()A.13B.14C.15D.16他们有一个卡特兰数公式,就是这么解的:,所以选B上面为正确答案,下面是我个人的理解,不保证正确:对这道题我说一下我的理解。它这个是要确定它的不同的二叉树的个数,所以我们要先了解怎么确定自己画出来的其中一个二叉树算是一个,那么将这些二叉树统计起来就是我们要的答案。那么怎么确定某个二叉树就算一个呢?题目给了我们先序序列,那
- 组合数 与卡特兰数
海风许愿
Acm算法c++算法数据结构c++
组合数与卡特兰数1a,b比较小时采用预处理方法,提前将所有的组合数都算出来,到时候直接查表采用的公式是C(a,b)=C(a-1,b)+C(a-1,b-1)原题链接:885.求组合数I-AcWing题库核心代码:for(inti=0;i=1e5时,显然已经不能直接开二维数组打表了,这样会爆数组但是我们可以开两个一维数组,一个存取i的阶乘,一个存取i阶乘的逆元我们可以直接从定义出发C(a,b)=a!/
- [leetcode] 22. 括号生成
会飞的大鱼人
leetcode算法dfs数据结构
文章目录题目描述解题方法方法一:dfs遍历java代码方法二:按照卡特兰数的思路递归求出有效括号组合java代码相似题目题目描述数字n代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且有效的括号组合。示例1:输入:n=3输出:["((()))","(()())","(())()","()(())","()()()"]示例2:输入:n=1输出:["()"]提示:1generatePar
- C++ 数论相关题目:卡特兰数应用、快速幂求组合数。满足条件的01序列
伏城无嗔
数论力扣算法笔记c++算法
给定n个0和n个1,它们将按照某种顺序排成长度为2n的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中0的个数都不少于1的个数的序列有多少个。输出的答案对109+7取模。输入格式共一行,包含整数n。输出格式共一行,包含一个整数,表示答案。数据范围1≤n≤105输入样例:3输出样例:5上述描述了本题的公式推导,最终也就是求一个卡特兰数。本题中,求逆元取模的是一个质数,可以用快速幂来求,如果不
- 【数据结构】(C语言版)第三章:栈和队列
_popo_
#数据结构
文章目录一、栈1.顺序栈2.共享栈3.链栈4.练习题二、队列1.顺序存储2.链式存储3.双端队列4.练习题三、栈和队列的应用1.栈在括号匹配时的应用2.栈在表达式求值中的应用3.栈在递归时的应用4.队列——树的层次遍历5.队列——图的层次遍历6.队列——操作系统应用四、特殊矩阵1.压缩存储2.稀疏矩阵一、栈概念:先进后出不同的出栈序列的个数:(卡特兰数)基操:InitStack(&S);//初始化
- 卡特兰数
wean_a23e
之前看算法导论时,讲了给定几个数字,能构造出几种二叉树,当时只想到排列组合的解决方法,极其复杂又不好记,过段时间还忘了。。。。今天看大牛的文章,评论有人提及卡特兰数,了解后才知道这么优雅的解决思路。。卡特兰数前几项卡特兰数前几项为1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,1296
- 卡特兰数
徐子尧
找工作
https://blog.csdn.net/wu_tongtong/article/details/78161211https://blog.csdn.net/wuzhekai1985/article/details/6764858/
- c语言程序设计卡特兰数问题,卡特兰数(Catalan)公式、证明、代码、典例
许小晴
c语言程序设计卡特兰数问题
大佬博客:传送门组合数公式:一、关于卡特兰数卡特兰数是一种经典的组合数,经常出现在各种计算中,其前几项为:1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,129644790,477638700,1767263190,6564120420,24466267020,91482563640,
- c语言程序设计卡特兰数问题,求解圆上2N个点的连线问题(卡特兰数)
2063650662
c语言程序设计卡特兰数问题
题目描述圆上有2n个不同的点,两点之间连成直线段,要求这些线段不能共点.计算出有12个点时共有多少种不同的连线方式.设计C语言函数,intcount(intn),计算并返回圆上有2n个点时的连线方式数量.分析我们可以使用递归的思想来求解这道题.设2n个节点的连线方法种数为(F(n)).如上图(这里取n=4),不妨给所有的点进行编号,然后我们分析第一个节点,发现从1号节点出发可以分为两种情况:第一种
- 什么是卡特兰数及卡特兰数公式推导
wuxiaopengnihao1
sqlite
什么是卡特兰数?明安图数,又称卡塔兰数,英文名Catalannumber,是组合数学中一个常出现于各种计数问题中的数列。以中国蒙古族数学家明安图(1692-1763)和比利时的数学家欧仁·查理·卡塔兰(1814–1894)的名字来命名,其前几项为(从第零项开始):1,1,2,5,14,42,132,429,1430,4862,…卡特兰数的几何意义简单来说,卡特兰数就是一个有规律的数列,在坐标图中可
- 卡特兰数~
qssssss79
算法java开发语言
摘dalao:Ypuyu、长满石楠的荒原卡特兰数是组合数学中一个常在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰(1814–1894)命名。历史上,清代数学家明安图(1692年-1763年)在其《割圜密率捷法》最早用到“卡塔兰数”,远远早于卡塔兰。有中国学者建议将此数命名为“明安图数”或“明安图-卡塔兰数”。即卡特兰数是符合以下公式的一个数列!公式(常见4个):h(n)=h(0)*
- 卡特兰数列编程实现
阿桑-
数据结构与算法
卡特兰(Catalan)数列典型特征有一类如下:1.可以分为两列2.每行从左向右依次递增(减),每列从上向下依次递增(减)/*2-10标准二维表问题问题为:设n是一个正整数。2*n的标准二维表是由正整数1,2,…2n组成的2*n数组,该数组的每行从左到右递增,每列从上到下递增。把数字从小到大进行排序,用0表示对应的数字在第一排,用1表示对应的数字在第二排,那么含有n个0,n个1的序列,就对应一种方
- 卡特兰数列
小宋想站起来
ACM常用序列
卡特兰数列的递推公式如下:h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0)(n>=2)例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5另类递推式:h(n)=h(n-1)*(4*n-2)/(n+1);递推关系的解为:h(n)=C(2n,n)/
- 低配版catalan数(算法)(C语言)
兮于怀
卡特兰数:n个节点最多可组成多少个形态不同的二叉树?n节车厢出栈的可能排列方式有多少种?#includeintmain(){intn;scanf("%d",&n);longlongintt=1,j=2*n;longlonginta,b,i,s=1;for(i=1;i<=n;i++){t=t*j;j--;}for(i=1;i<=n;i++){s=s*i;}a=t/s;b=a/(n+1);printf
- C++实现——卡特兰数列及其应用
浪漫硅谷
algorithm卡特兰数列
/*卡特兰数列的原理及其应用场景令h(1)=1,catalan数满足递归式:h(n)=h(1)*h(n-1)+h(2)*h(n-2)+…+h(n-1)h(1)(其中n>=2)该递推关系的解为:h(n)=c(2n-2,n-1)/n(n=1,2,3,…)1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,3
- C++题目:卡特兰数
SunnyLi1106
C++基础经典例题c++
卡特兰数题目描述这里有一个经典的组合计数问题(这是2009年全国高中数学联赛河北省预赛试题):101010个人去买票,其中555个人每人只有五元纸币一张,另外555个人每人只有十元纸币一张。售票处初始的时候没有任何零钱。如果只关心每个人的持有的纸币面值(例如,持有五元纸币的人视作相同的),那么这些人有几种来买票的先后顺序,使售票处总能顺利找零。这个问题与“从正方网格中,从左下角走最短路到右上角,但
- C++卡特兰数
SkeletonKing233
C++算法卡特兰数
卡特兰数简介卡特兰数又称卡塔兰数,卡特兰数是组合数学中一个常出现在各种计数问题中的数列。以比利时的数学家欧仁·查理·卡塔兰(1814–1894)的名字来命名。但最早是欧拉在1753年解决凸包划分成三角形问题的时候,推出的Catalan数。初始值:f(0)=f(1)=1递推公式:f(n)=f(0)*f(n-1)+f(1)*f(n-2)+……+f(n-1)*f(0)解决的问题:括号化:P=a1×a2×
- 关于出栈序列的解法总结及卡特兰数的学习(C语言)
紫炁
算法dfs
出栈次序一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?解法1——递归/记忆化搜索考虑用一个二维数组f[i][j]模拟当前情况:i——进栈序列中还有i个待排的数,j——栈中有j个数,f[i][j]的值表示当前i,j情况下有几种输出方案。首先如果f[i][j]有值,直接调用即可(记忆化搜索,节省时间);如果i=0,即序列全部入栈,只有一种输出方法,所以返回1;考虑一般情况,有
- C#,卡特兰数(Catalan number,明安图数)的算法源代码
深度混淆
C#算法演义AlgorithmRecipesC#卡塔兰数入门教程
一、概要卡特兰数(英语:Catalannumber),又称卡塔兰数、明安图数,是组合数学中一种常出现于各种计数问题中的数列。以比利时的数学家欧仁·查理·卡特兰的名字来命名。1730年左右被蒙古族数学家明安图使用于对三角函数幂级数的推导而首次发现,1774年被发表在《割圜密率捷法》。二、卡特兰数的历史1730年,中国清代蒙古族数学家明安图比卡特兰更早使用了卡特兰数,在发现三角函数幂级数的过程中,见《
- 算法学习总结
joker D888
算法与数据结构算法c++ACM数据结构
算法总结文章目录算法总结搜索遍历dfs树的深度树的重心图的连通块划分bfs双端队列bfsbfs图问题迭代加深双向搜索A*IDA*Morris遍历Manacher数论质数判断质数分解质因数埃氏筛法线性筛法约数求N的正约数集合——试除法求1~N每个数的正约数集合——倍除法欧拉函数快速幂快速幂求逆元扩展欧几里得算法斐蜀定理扩展欧几里得算法线性同余方程中国剩余定理卡特兰数低阶数据结构链表邻接表AVL树单调
- Catalan(卡特兰)数
丶lemon7
数据结构
二叉搜索树概念:介绍卡特兰数之前先来了解一些二叉搜索树的概念。比如有一棵树,它根节点比左边节点要大,比右边节点要小,这样的树就称为二叉搜索树。如下图所示:卡特兰数:我们把n个节点所能组成的不同二叉搜索树的个数称为卡特兰数(Catalan数)。接下来我们来看一下不同的卡特兰数是怎么计算出来的。卡特兰数分析:我们把C(n)记为卡特兰数,当节点数为1时,只能组成一种二叉搜索树,因此C(1)=1。C(2)
- AcWing 889. 满足条件的01序列(卡特兰数应用)
ˇasushiro
AcWing算法笔记
满足条件的01序列假设长度为n个序列要求满足题意1的前缀0的个数不能超过1的个数将问题抽象为从(0,0)到(n,n)向上走一个代表这一步对应序列中的值是1,向右走代表序列中的值是0要想满足1的前缀0的数量大于1的数量就需要满足所有路过的途径在y=x这个函数个下面但是如何表达呢?我们采用所有到(n,n)的方案的集合减去越过y=x+1这个直线的方案集合因为越过y=x+1这个直线的方案集合可以表示为从(
- 栈出栈序列问题的探究与思考(卡特兰数)
Pigwantofly
基本算法数据结构与算法算法c++数据结构
目录一、引入二、朴素算法三、卡特兰数的介绍四、卡特兰数的实现1.递推实现卡特兰数2.组合数法实现卡特兰数五、结语一、引入初学数据结构与算法,学到栈的时候,总是会遇到这样一类问题,设输入序列为1,2,3,则经过栈的作用后可以得到()中不同的输出序列。接着就开始一直在想,谁入栈,谁出栈,数字少还好,但数字一多起来,我就开始出现遗漏和重复,所以我只想有没有一种方法,或是说一种公式,可以让我在计算诸如此类
- C++混合笔记
ltl1
笔记c++笔记算法
目录先上一波最短路模板:Dijkstra朴素:(链式前向星)Dijkstra堆优化:(链式前向星)SPFA:Bellman_ford1:Trie2.并查集组合数原公式:组合数公式:编辑逆元预处理来求:在编辑可用代码:组合数卢卡斯定理:代码:卡特兰数:编辑01背包转移方程:01背包注意事项:01背包代码:01背包空间优化版(滚动数组):时间复杂度:编辑完全背包转移方程:完全背包变量意思:完全背包朴素
- 求组合数的四种方法以及卡特兰数
2301_78981471
算法学习记录算法笔记c++
文章目录组合数范围较小&&模量一定方法-递推法思路时间复杂度分析AcWing885.求组合数ICODE组合数范围较大&&模量一定方法-快速幂时间复杂度分析AcWing886.求组合数IICODE组合数范围爆大&&模量不定方法-Lucas定理时间复杂度分析AcWing887.求组合数IIICODE组合数范围爆大&&没有模量方法-线性筛+高精度时间复杂度分析AcWing888.求组合数IVCODE卡特
- 洛谷P1722 矩阵Ⅱ——卡特兰数
louisdlee.
洛谷深入浅出进阶篇c++组合数学
传送门:P1722矩阵II-洛谷|计算机科学教育新生态(luogu.com.cn)https://www.luogu.com.cn/problem/P1722用不需要除任何数的公式来求。#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include#incl
- 组合数学(四种求组合数的方法:递推,逆元,lucas,卡特兰数)
clmm_
算法
求组合数,对于不同的数据量可以用不同的方法。实际上只用记住最高效的那个方法即可。本文将介绍四种求组合数的办法递推求组合数我们需要知道一个递推式。怎么记忆呢?假如我们要求从a个苹果里选b个苹果,我们可以分成两种情况1.包含a个苹果里的苹果i(ai),那么就是,因为已经选了ai,再选b-1个苹果即可2.不包含ai,就是,需要在剩下的a-1个苹果里选b个苹果用递推式预处理,时间复杂度就大大降低了时间复杂
- lc.96 不同的搜索二叉树 卡特兰数
对特别对
我与力扣斗智斗勇leetcodejava动态规划
lc.96不同的搜索二叉树题目描述正解题目描述来源:leetcode_hot100_96给你一个整数n,求恰由n个节点组成且节点值从1到n互不相同的二叉搜索树有多少种?返回满足题意的二叉搜索树的种数。正解思路:卡特兰数要算G(n)就需要G(0)~G(n-1)所有的值,for(inti=2;i<=n;i++)存在的意义是为了G(i)模拟算出G(0)到G(n-1)所有的值for(intj=1;j<=i
- 【算法专题】卡特兰数
你好世界wxx
算法专题卡特兰数组合数
卡特兰数1.概述卡特兰数:首先这个一个数,很多问题的结果都是卡特兰数,比如2016年全国三卷数学选择题压轴题让求解的就是卡特兰数,问题如下:首先是结论:卡特兰数为:C2nnn+1\frac{C_{2n}^n}{n+1}n+1C2nn因此,对于上面的题目,结果就是C2mmm+1=C844+1=705=14\frac{C_{2m}^m}{m+1}=\frac{C_8^4}{4+1}=\frac{70}
- AcWing算法基础课----数学知识(三) 笔记 ( 高斯消元 + 求组合数 )
彡倾灬染|
算法学习笔记AcWingc++c语言
数学知识高斯消元O(n^3)求组合数1.递归法求组合数2.Lucas定理3.分解质因数法求组合数卡特兰数高斯消元O(n^3)解方程:无解\无穷多解\有唯一解利用线性代数初等行列变换1.把某一行乘一个非零的数2.交换某两行3.把某行若干倍加到另一行上去变换之后结果与解的关系:1.完美阶梯型唯一解2.不完美阶梯型0=非零无解3.不完美阶梯型0=0无穷解浮点数判断是否为零需要和eps比算法步骤:枚举每一
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象