E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
吴恩达机器学习私人笔记
吴恩达机器学习
exercise笔记
参考这里入下门,主要包括代码逻辑、numpy、pandas、scipy等的使用。ML-Exercise1X=np.matrix(X.values)DataFrame.values(旧),DataFrame.to_numpy()用于将pandas中的dataframe转为numpy中的数组。更新:exercise5中将数据框转化数组使用了已经淘汰的DataFrame.as_matrix(),实际应该
twentyonepilots
·
2023-09-16 12:42
Python
ML
《北京北京》
私人笔记
1.就是黄鼠狼下耗子,一拨不如一拨,一辈不如一辈2.手足无措,仿佛雏妓。3.我老妈给我买了一个口琴。但是我肚子不好,一吹口琴,吃到前几天的口水,就闹肚子,所以基本没吹。我长大了之后,还是五音不全,还是对音乐充满敬畏但是一窍不通,对能歌善舞的姑娘没有任何抵抗力,在她们面前充满自卑感。我无限羡慕那些精于口哨唱歌弹琴跳舞的优雅男生,趁热儿吃碗卤煮火烧,坐在琴凳前,打开钢琴盖儿,一首门德尔松的小夜曲,地板
且笑逐颜开
·
2023-09-14 06:59
吴恩达机器学习
3.26
吴恩达机器学习
受到广泛网友推介,今天开始刷他的课程。生活中有哪些地方接触到算法?我们的百度搜索总会给到优质搜索结果,这就是机器学习算法。
Wincent__
·
2023-09-13 13:58
图像分割|机器学习|模式识别(2019-04-29~05-04)
2.完成学习机器学习作业,
吴恩达机器学习
课程作业。3.继续阅读PRML4.291.看pspnet代码●pythonwith关键字:简单就是打开文件,读完了,自动关文件。
Rlinzz
·
2023-09-13 12:16
吴恩达机器学习
作业3:多类分类(Python实现)
机器学习练习3-多类分类在本练习中,您将实现一对一的逻辑回归和神经网络来识别手写的数字。在开始编程练习之前,我们强烈建议您观看视频讲座,并完成相关主题的复习问题。要开始这个练习,您需要下载启动代码并将其内容解压缩到您希望完成这个练习的目录中。自动手写数字识别在今天被广泛使用——从识别邮件信封上的邮政编码(邮政编码)到识别银行支票上所写的金额。本练习将展示您所学习到的方法如何用于此分类任务。在练习的
Phoenix_ZengHao
·
2023-09-11 23:06
机器学习
python
机器学习
分类
吴恩达机器学习
笔记(三)
关于这系列的python代码参考下面这个大佬的代码:
吴恩达机器学习
与深度学习作业目录-Cowry-CSDN博客接下来开始第三周的学习,线性回归算法结束,进入下一个算法。
yh_y
·
2023-09-11 09:26
线性回归(
吴恩达机器学习
)
回归是机器学习中最经典的算法,它的意思就是根据之前的数据找出某种规律(可以是线性,也可以是非线性),构建模型实现预测或分类。一、线性回归1.线性回归线性回归顾名思义,就是找出大量数据在二维平面中呈现的是线性关系。拿房价举个例子,假如你现在要出售自己的房子,你不大清楚这么大面积的房子能卖多少钱,于是你找到了所在小区的房价数据(房价、面积),发现大概是呈线性分布,那么如果你可以通过这个直线,去计算出自
没名字的蓝猫
·
2023-09-08 08:04
章节7_Logistic回归_《
吴恩达机器学习
》学习笔记
章节7有的时候我们遇到的问题并不是线性的问题,而是分类的问题。比如判断邮件是否是垃圾邮件,信用卡交易是否正常,肿瘤是良性还是恶性的。他们有一个共同点就是Y只有两个值{0,1},0代表正类,比如肿瘤是良性的;1代表负类,比如肿瘤是恶性的。当然你想用1代表良性也可以,而且输出的值不仅仅局限为0和1两类,有可能还有多类,比如手写体识别是从0到9。如果使用线性的方法来判断分类问题,就会出现图上的问题。我们
jimleelcc
·
2023-09-07 12:44
我的
私人笔记
(安装hadoop)
1.安装hadoop01环境注需安装最小安装和使用英文界面2.安装群集//获得网关IP:192.168.80.2获得子网掩码:255.255.255.0//获得网段:[起始IP地址]192.168.128---[结束IP地址]192.168.80.254//计划集群的ip和主机名//192.168.80.151hadoop01//192.168.80.152hadoop02//192.168.80
瑾寰
·
2023-09-06 18:34
笔记
hadoop
大数据
【
吴恩达机器学习
】第三周—逻辑回归、过拟合、正则化
31.jpg1.分类问题(Regression)在分类问题中,你要预测的变量是离散的值,我们将学习一种叫做逻辑回归(LogisticRegression)的算法,这是目前最流行使用最广泛的一种学习算法。顺便说一下,逻辑回归算法是分类算法,我们将它作为分类算法使用。有时候可能因为这个算法的名字中出现了“回归”使你感到困惑,但逻辑回归算法实际上是一种分类算法,它适用于标签取值离散的情况,如:1001。
Sunflow007
·
2023-09-06 17:55
【4.22每日一写】共振阅读
图片发自App课程名:第十课阅读高手的
私人笔记
术共振笔记术我的作业:选择感兴趣的实用类书籍,按照模板制作共振笔记,记录花费时间,告知使用的感受并提出疑问。
黄小兜在努力
·
2023-09-06 07:00
机器学习入门笔记1
目前主要跟着B站的2022
吴恩达机器学习
课程并完成相应的练习作业文章目录基础知识ApplicationsDefinitionSupervisedlearningUnsupervisedlearningLinearRegressionModel
lonyhai
·
2023-09-04 14:27
机器学习
机器学习
python
学习
我的
私人笔记
(安装hbase)
在安装前需要安装好JDK、Hadoop以及Zookeeper,JDK版本为1.8、Hadoop版本为2.7.4以及Zookeeper的版本为3.4.10。4.1.下载下载地址:Indexof/dist/hbase本次学习版本为:hbase-1.2.1-bin.tar.gz4.2.安装步骤上传安装包至hadoop01节点的/opt/software目录下解压hbase-1.2.1-bin.tar.g
瑾寰
·
2023-09-03 05:34
笔记
hadoop
大数据
我的
私人笔记
(安装hive)
1.hive下载:Indexof/dist/hive/hive-1.2.1或者上传安装包至/opt/software:rz或winscp上传2.解压cd/opt/softwaretar-xzvfapache-hive-1.2.1-bin.tar.gz-C/opt/servers/3.重命名mvapache-hive-1.2.1-binhive4.配置环境变量vi/etc/profileexport
瑾寰
·
2023-09-02 22:17
笔记
hadoop
大数据
我的
私人笔记
(Linux中安装mysql)
1.安装wget:yum-yinstallwget2.下载mysql社区版本源并安装wgethttps://dev.mysql.com/get/mysql57-community-release-el7-10.noarch.rpmyuminstall-ymysql57-community-release-el7-10.noarch.rpmrpm--importhttps://repo.mysql.
瑾寰
·
2023-09-02 22:17
笔记
hadoop
adb
我的
私人笔记
(zookeeper分布式安装)
分布式安装1.安装前准备(1)下载zookeeper:Indexof/dist/zookeeper(当前使用为3.4.10版本)(2)安装JDK(3)拷贝zookeeper安装包到Linux系统下(4)解压到指定目录tar-xzvfzookeeper-3.4.10.tar.gz-C/opt/servers/(5)修改名称mvzookeeper-3.4.10/zookeeper2.配置修改(1)修改
瑾寰
·
2023-09-02 22:17
笔记
debian
运维
感谢有你!
今天又遇小蔡,是她,让我了解,然后参加日更活动,我们谈论的话题之一,是彼此意外中断了的日更,及那一段回看时,却是无限珍贵的
私人笔记
。她鼓励我,她再次鼓励我,从头再参加挑战日更。
逍遥三游
·
2023-08-30 14:52
吴恩达机器学习
——正则化
7.1过拟合的问题过拟合问题简单来说就是泛化能力差:所建的机器学习模型在训练样本中准确率很高,在验证数据集中准确率低——也就是说模型难以推广到新的数据。下图是一个回归问题的例子:第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看出,若给出一个新的值使之预测,它将表现的很差,是过拟合,虽然能非常
SCY_e62e
·
2023-08-29 00:26
【
吴恩达机器学习
】第六周—机器学习系统设计
31.jpg1.应用机器学习的建议1.1下一步做什么仍然使用预测房价的学习例子,假如你已经完成了正则化线性回归,也就是最小化代价函数J的值,假如,在你得到你的学习参数以后,如果你要将你的假设函数放到一组新的房屋样本上进行测试,假如说你发现在预测房价时产生了巨大的误差,现在你的问题是要想改进这个算法,接下来应该怎么办?获得更多的训练实例——通常是有效的,但代价较大,下面的方法也可能有效,可考虑先采用
Sunflow007
·
2023-08-21 22:16
吴恩达机器学习
2011版本学习笔记
这是看完视频后,按自己的理解做了笔记。监督学习学的比较认真,33之后的无监督学习心态已经浮躁了,以后要再学一遍2022最新版视频课。1,有正确答案是有监督学习,反之是无监督学习2,模型就是把训练数据拟合为一个公式(严格来说是个函数,关系)。入门的拟合的方法是最小二乘法,先假设一个公式,代入不同系数,然后再把训练数据的x依次代入求y,然后看y与训练数据的正确答案的方差。这样假设的系数作z,与结果方差
zhaot1993
·
2023-08-19 21:05
机器学习
学习
笔记
人工智能
机器学习(一)模型三要素
模型迭代要求4.策略阶段要点(三)优化算法:1.普通参数2.超参数二、深度学习改变了什么1、大规模数据性能提升可观2、隐式特征学习--AE本文是对李航博士《机器学习方法》,邱锡鹏博士的《神经网络与深度学习》,
吴恩达机器学习
课程
元吉光
·
2023-08-14 05:43
机器学习
人工智能
算法
吴恩达机器学习
笔记(二)
模型描述:根据房间的大小(平方数)预测其能售卖出的价格1、监督学习(每个例子都有一个正确的输出值)1.1、回归问题,可以预测一个准确的数值输出1.2、分类问题,可以预测离散值输出(只有0和1的离散值输出)2、训练集(trainingset):在监督学习中提供“参考”的数据集合三个要素:训练集的数量,输入变量,输出变量训练样本(trainingexample):(x^(i),y^(i))第i个训练样
五大人
·
2023-08-12 02:26
成功文案的创作套路
文案的本质是沟通,不是自言自语,不是
私人笔记
,写出来是要传播出去的。因为是沟通,所以就有面向的对象。
ifeng_X
·
2023-08-11 08:52
吴恩达机器学习
笔记(自用)
吴恩达机器学习
机器学习的定义什么是机器学习?
cosθ
·
2023-08-09 06:02
机器学习
人工智能
python
第十四章 无监督学习
该系列文章为,观看“
吴恩达机器学习
”系列视频的学习笔记。虽然每个视频都很简单,但不得不说每一句都非常的简洁扼要,浅显易懂。非常适合我这样的小白入门。
tomas家的小拨浪鼓
·
2023-08-07 01:24
吴恩达机器学习
课程笔记-(1)监督学习、无监督学习(Supervised Learning and Unsupervised Learning)
1、监督学习、无监督学习(SupervisedLearningandUnsupervisedLearning)1.1机器学习是什么?一个程序被认为能从经验E中学习,解决任务T,达到性能度量值P,当且仅当,有了经验E后,经过P评判,程序在处理T时的性能有所提升。—TomMitchallAcomputerprogramissaidtolearnfromexperienceEwithrespecttos
Jorunk
·
2023-08-02 15:35
吴恩达机器学习
笔记(3)
多变量线性回归:问题:根据多个属性,如房子面积,房子楼层,房子年龄等估计房子的价格多变量线性回归中的变量多变量线性回归的假设此时有多个特征,i对应不同的特征值,如房子面积,楼层,年龄等,参数为一个n+1维向量多变量线性回归中的梯度下降,对每一个参数求偏导数从而得到不同参数的梯度参数特征缩放——加速梯度下降过程收敛到最优值多变量梯度下降时,参数的取值要尽量小在多多变量梯度下降中,要让不同参数的取值范
魏清宇
·
2023-07-30 01:52
异常检测算法
anomaly-detection-resources7.
吴恩达机器学习
中文版笔记:异常检测(AnomalyDetection)
夕宝爸爸
·
2023-07-30 00:55
吴恩达机器学习
打卡day6
本系列文档按课程视频的章节(P+第几集)进行分类,记录了学习时的一些知识点,方便自己复习。课程视频P54图1表示求导数的原理。图1 图2将图1推广到有n个参数变量的情况。图2 图3提出了一些注意事项。图3 课程视频P55图4表示了求导时的一些特殊规律。图4 课程视频P56图5给出了选择神经网络层数的一些规律,通常中间层的层数要大于等于输入层的特征变量数量。图5 **图6给出了训练神经网络的操作步骤
不学了,删库跑路
·
2023-07-24 21:15
机器学习
人工智能
深度学习
回归
分类
吴恩达机器学习
-logistic回归
logistic回归—离散变量的分类问题(0,1)分类,通常0表示“没有某样东西”,1表示“有某样东西”如有癌症,是垃圾软件等上图所示是一个(0,1)分类问题,当y的取值为{0,1,2,3}时,就变成一个多分类问题线性回归拟合而分类问题上述问题是一个肿瘤预测问题,根据肿瘤的大小判断肿瘤是良性还是恶性的,当数据显示如图时,使用线性回归似乎是合理的肿瘤大小小于0.5对应的那个值时肿瘤为良性,大于时为恶
魏清宇
·
2023-07-22 20:28
吴恩达机器学习
2022-Jupyter
1可选实验室:多变量线性回归在这个实验室中,您将扩展数据结构和以前开发的例程,以支持多个特性。一些程序被更新使得实验室看起来很长,但是它对以前的程序做了一些小的调整使得它可以很快的回顾。2目标扩展我们的回归模型例程以支持多个特性扩展数据结构以支持多个特性重写预测,成本和梯度例程,以支持多个功能利用NumPynp.dot向量化它们的实现,以提高速度和简单性在这个实验室里,我们将利用:NumPy,一个
KAY金
·
2023-07-18 06:40
机器学习
机器学习
jupyter
人工智能
吴恩达机器学习
笔记(5)—— 神经网络
又摸鱼摸了好久,终于开学了,不能再摸鱼了,这学期课都是嵌入式开发方面的,我给自己的电脑买了个新硬盘装了Linux,不再像以前在虚拟机里小打小闹了,折腾了好几天的新系统,现在有时间写新的笔记了。这次给大家带来的是神经网络,比较难,我可能写的也不是太明白,就看看吧。非线性假设其实神经网络是一个很古老的算法,不过在很长的一段时间内受计算机的机能所限,这个算法没有太大的进展。直到了现在,计算机的飞速发展,
机智的神棍酱
·
2023-07-17 06:15
【
吴恩达机器学习
】第七周—SVM支持向量机与核函数
31.jpg1.支持向量机SupportVectorMachines1.1介绍在分类问题中,除了线性的逻辑回归模型和非线性的深度神经网络外,我们还可以应用一种被广泛应用于工业界和学术界的模型—支持向量机,简称SVM,与逻辑回归和神经网络相比,支持向量机在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式。尽管现在深度学习十分流行,了解支持向量机的原理,对想法的形式化、简化、及一步步使模型更一
Sunflow007
·
2023-07-16 16:08
吴恩达机器学习
2022-Jupyter-用scikitlearn实现线性回归
1可选实验:使用Scikit-Learn进行线性回归有一个开源的、商业上可用的机器学习工具包,叫做scikit-learn。本工具包包含您将在本课程中使用的许多算法的实现。1.1工具您将利用scikit-learn以及matplotlib和NumPy中的函数。2线性回归封闭式解决方案Scikit-learn的线性回归模型实现了一种封闭式的线性回归。让我们使用早期实验室的数据——一栋1000平方英尺
KAY金
·
2023-07-15 16:41
机器学习
机器学习
人工智能
吴恩达机器学习
2022-Jupyter-Scikit-Learn教学
1可选实验室:线性回归使用Scikit-Learn有一个开源的、商业上可用的机器学习工具包,叫做scikit-learn。本工具包包含您将在本课程中使用的许多算法的实现。1.1目标在这个实验室里:利用scikit-学习使用线性回归梯度下降法来实现1.2工具您将利用scikit-learn以及matplotlib和NumPy中的函数。2梯度下降Scikit-learn有一个梯度下降法回归模型skea
KAY金
·
2023-07-15 16:41
机器学习
机器学习
jupyter
scikit-learn
吴恩达机器学习
2022-Jupyter-用scikitlearn实现逻辑回归
1.1目标使用scikit-learn培训Logit模型模型。1.2数据集importnumpyasnpX=np.array([[0.5,1.5],[1,1],[1.5,0.5],[3,0.5],[2,2],[1,2.5]])y=np.array([0,0,0,1,1,1])1.3Fit模型下面的代码导入了scikit-learn的Logit模型模型。您可以通过调用fit函数将此模型适合于训练数据
KAY金
·
2023-07-15 16:39
机器学习
jupyter
逻辑回归
吴恩达机器学习
2022-Jupyter1可选实验室: Python 和 Jupyter 笔记本简介
欢迎来到第一个可选实验室!可供选择的实验室包括:提供信息-比如这个笔记本以实际例子加强课堂教材提供分级实验室常规的工作实例1.1目标在本实验中,您将:对Jupyter笔记本进行简要介绍,参观Jupyter笔记本,了解标记单元格和代码单元格之间的区别,练习一些基本的python熟悉Jupyter笔记本最简单的方法就是参观上面的帮助菜单帮助菜单本课程中使用的Jupyter笔记本有两种类型的单元格。诸如
KAY金
·
2023-07-15 09:37
机器学习
python
开发语言
吴恩达机器学习
2022-Jupyter-机器学习实例
1可选实验:特征工程和多项式回归1.1目标在这个实验室里:探索特征工程和多项式回归,它可以让你使用线性回归机制来适应非常复杂,甚至非常非线性的函数。1.2工具您将利用在以前的实验中开发的函数以及matplotlib和NumPy。2特征工程与多项式回归综述线性回归提供了一种模型方法,公式形式为:如果您的特性/数据是非线性的或者是特性的组合,该怎么办?例如,住房价格往往不与居住面积成线性关系,而是对小
KAY金
·
2023-07-15 08:00
机器学习
机器学习
jupyter
人工智能
吴恩达机器学习
2022-Jupyter
1可选实验室:Python、NumPy和矢量化简要介绍本课程中使用的一些科学计算。特别是NumPy科学计算包及其与python的使用。2目标在这个实验室里将回顾课程中使用的NumPy和Python的特性。Python是本课程中使用的编程语言。NumPy库扩展了python的基本功能,添加了更丰富的数据集,包括更多的数值类型、向量、矩阵和许多矩阵函数。NumPy和python相当无缝地协同工作。Py
KAY金
·
2023-07-15 08:15
机器学习
jupyter
人工智能
吴恩达机器学习
2022-Jupyter特征缩放
1可选实验室:特征缩放和学习率(多变量)1.1目标在这个实验室里:利用前一实验室开发的多变量线性回归模型程序在具有多种功能的数据集上运行梯度下降法探讨学习速度alpha对梯度下降法的影响通过使用z分数标准化的特征缩放来提高梯度下降法的性能1.2工具您将使用在上一个实验中开发的函数以及matplotlib和NumPy。importnumpyasnpnp.set_printoptions(precis
KAY金
·
2023-07-15 08:15
机器学习
机器学习
jupyter
人工智能
机器学习比较好的视频资源
[中英字幕]
吴恩达机器学习
系列课程_哔哩哔哩_bilibiliwww.bilibili.com/video/BV164411b7dx?
无敌三角猫
·
2023-06-20 11:46
深度学习
人工智能
机器学习
吴恩达机器学习
——支持向量机
本章内容简介:·12.1优化目标·12.2大边界的直观理解·12.3大边界分类背后的数学·12.4核函数1·12.5核函数2·12.6使用支持向量机对支持向量机的一些理解:支持向量机解决的是多维的分类问题。当给出一定的数据集时,分类学习的最基本想法就是基于训练集在样本空间中找到一个划分超平面,将不同类别的样本划分,又因为在训练学习中,数据大多是高维度的,并且数据不一定都是线性可分的,那么线性不可分
SCY_e62e
·
2023-06-20 07:47
吴恩达机器学习
笔记(一)
概念机器学习是研究计算机模仿人类学习的过程,利用新的数据改善自身的性能,是人工智能的核心。机器学习、人工智能、深度学习之间的关系:AI、ML、DL的包含关系人工智能=机器人;机器学习是实现人工智能的一种方法;深度学习是实现机器学习的一种技术。概念包含关系上:人工智能>机器学习>深度学习。视频课简记:1、引言1.1欢迎1、机器学习很常见,如谷歌搜索(搜出的网站排序算法)、邮箱的垃圾站(无监督)。2、
yh_y
·
2023-06-12 00:10
吴恩达机器学习
个人总结 ---- 思维导图
吴恩达机器学习
个人总结----思维导图注:因为平台限制,图片只能上传压缩后的并且还不能一次性上传整张图片,如果大家需要更加详细的思维导图或者需要xmind格式的文件可以私信或者+V。
小鱼干儿♛
·
2023-06-11 22:33
人工智能
机器学习
人工智能
深度学习入门路径
的表示理论推导课程)(标@的表示高质量课程)(标$的表示选学内容)基础部分1.Python基础(深度之眼课程)[5d]2.数学基础(深度之眼课程)[10d]基础课程不限于此,资源较多,可自行选择机器学习部分1.
吴恩达机器学习
或跃在渊_NUE
·
2023-04-18 11:15
吴恩达机器学习
作业笔记(线性回归)
零基础知识1.DataFrame结构PandasDataFrame入门教程(图解版)DataFrame一个表格型的数据结构,既有行标签(index),又有列标签(columns),它也被称异构数据表,所谓异构,指的是表格中每列的数据类型可以不同,比如可以是字符串、整型或者浮点型等pd.DataFrame(data,index,columns,dtype,copy)data可以是多种类型index和
Curse of Knowledge
·
2023-04-14 07:07
机器学习
线性回归
python
人工智能
吴恩达机器学习
作业笔记(Logistic 回归)
数据一共有三列,前两列是学生成绩,最后一列用1.0代表学生是否被录取使用分类的方法进行学习,得到一个学生被录取的概率值。零基础知识pandas读取文件importpandasaspddata=pd.read_csv('path',sep=',',header=0,names=['第一列','第二列','第三列'],encoding='utf-8')原文链接:https://blog.csdn.ne
Curse of Knowledge
·
2023-04-14 07:37
机器学习
回归
python
梦想只有不懈努力才能变成现实——读《绿山墙的安妮》
之后,露西一发不可收拾,又陆续发表了几部“安妮系列”小说,还有其它20部长篇以及短篇小说、诗歌、自传和
私人笔记
等等,一生著作总共超过500
黄土人家
·
2023-04-11 04:37
吴恩达机器学习
--线性回归
文章目录前言一、单变量线性回归1.导入必要的库2.读取数据3.绘制散点图4.划分数据5.定义模型函数6.定义损失函数7.求权重向量w7.1梯度下降函数7.2最小二乘法8.训练模型9.绘制预测曲线10.试试正则化11.绘制预测曲线12.试试sklearn库二、多变量线性回归1.导入库2.读取数据3.划分数据4.定义假设函数5.定义损失函数6.定义梯度下降函数7.训练模型8.运用sklearn绘图总结
Want595
·
2023-04-10 23:56
机器学习
线性回归
python
逻辑回归(
吴恩达机器学习
)
一、分类问题在分类问题中,我们的任务是通过算法对数据判断是否属于某一类,如果只有两类的话,那么就是“是”与“否”。分类的例子比如说:判断一封邮件是否属于垃圾邮件,判断一次金融交易是否属于欺诈,判断肿瘤是良性肿瘤还是恶性肿瘤等。在二元分类问题中,最后输出的结果只有两种,其中“0”表示“否”,“1”表示是“是”。对于(0,1)区间的其他值,取大于等于“0.5”输出为1,小于“0.5”则输出为“0”,作
没名字的蓝猫
·
2023-04-10 01:43
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他