E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
机器学习实战+西瓜书
机器学习实战
笔记5——线性判别分析
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
绍少阿
·
2024-09-12 20:32
机器学习笔记
可视化
机器学习
python
人工智能
机器学习实战
----波士顿房价预测模型
波士顿房价模型预测是一个回归问题,可以采用r2_score方法来作为评价指标。importnumpyasnpimportpandasaspdfromsklearn.metricsimportr2_score#从sklearn的数据库中导入波士顿房产数据fromsklearn.datasetsimportload_bostonfromsklearn.model_selectionimporttrai
永远偷渡不了的非洲人
·
2024-09-04 22:24
机器学习
机器学习
sklearn
python
python logistic模型_Python实践之逻辑回归(Logistic Regression)
机器学习算法与Python实践这个系列主要是参考《
机器学习实战
》这本书。因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法。
weixin_39922394
·
2024-09-03 02:12
python
logistic模型
周工作计划2019-03-25
但是好的一点是,
西瓜书
基本都看完了。本周工作计划:机器学习分享活动(关于决策树的分享)回看一下
西瓜书
的东西,每一章把开头总结写一下。老师没有给具体的任务,留了再说吧。
MikeShine
·
2024-09-02 02:05
(二十一)Seaborn知识学习8-python数据分析与
机器学习实战
(学习笔记)
文章原创,最近更新:2018-05-17课程来源:python数据分析与
机器学习实战
-唐宇迪引言:介绍seaborn热度图绘制学习参考链接:1、Seaborn官方0.8.1版本首先介绍以下热度图的作用,
努力奋斗的durian
·
2024-08-28 00:34
机器学习(
西瓜书
)学习笔记导览
本篇文章会持续更新直到更新完毕,关注博主不迷路~(如果没有超链接,表示还没有更新到)第一章绪论1.1引言1.2基本术语1.3假设空间1.4归纳偏好第二章模型评估与选择2.1经验误差与过拟合2.2评估方法2.3性能度量2.4比较检验2.5偏差与方差第三章线性模型3.1基本形式3.2线性回归3.3对数几率回归3.4线性判别分析3.5多分类学习3.6类别不平衡问题第四章决策树4.1基本流程4.2划分选择
盛寒
·
2024-08-25 18:11
机器学习西瓜书
学习
机器学习
人工智能
机器学习实战
2--蒙特卡洛方法与Q-Q图(2022/10/12)
蒙特卡洛方法与Q-Q图文章目录蒙特卡洛方法与Q-Q图蒙特卡洛方法蒙特卡洛的定义和基本步骤一些常用的概率论相关函数使用蒙特卡洛验证大数定理Q-Q图Q-Q图的定义及用途importnumpyasnpfromnumpy.linalgimportinv,eigimportmatplotlib.pyplotaspltimportpandasaspdfromscipy.statsimportnorm蒙特卡洛方
点灯的棉羊
·
2024-02-20 03:13
机器学习Jupyter笔记
机器学习
人工智能
numpy
python
机器学习实战
1-基础运用(2022/10/11)
机器学习实战
1-基础运用文章目录
机器学习实战
1-基础运用numpy的简单运用生成矩阵和矩阵的简单操作用pandas库读取、保存csv数据文件read_csv()函数及读入的数据处理to_csv()保存数据
点灯的棉羊
·
2024-02-20 03:12
机器学习Jupyter笔记
机器学习
python
numpy
机器学习实战
Jupyter笔记专栏汇总
机器学习实战
Jupter笔记开始博客学校开始的一门机器学习的课程,于是使用jupyter写这门课的作业,顺便将其完善为笔记发表为这个专栏的博客,并将专栏博客链接汇总到这里。
点灯的棉羊
·
2024-02-20 03:12
机器学习Jupyter笔记
机器学习
jupyter
人工智能
朴素贝叶斯算法
朴素贝叶斯算法一、基本概念二、算法及代码应用朴素贝叶斯NB算法分类算法区别其他机器学习算法:
机器学习实战
工具安装和使用一、基本概念朴素贝叶斯(NB)是一种基于贝叶斯定理与特征条件独立假设的分类算法。
YuanDaima2048
·
2024-02-19 10:46
机器学习
算法学习
算法
机器学习
人工智能
深度学习
python
sklearn
机器学习LDA线性判别器代码实现
机器学习LDA线性判别器代码实现
西瓜书
P60线性判别器LDA代码实现:importnumpyasnpimportmatplotlib.pyplotaspltdefload_data(file_name)
Longlongaaago
·
2024-02-15 07:38
机器学习
LDA
线性判别分析
代码实现
【
机器学习实战
】大数据与MapReduce
当运算需求超出了当前资源的运算能力,一、可以考虑购买更好的机器;二、可以将计算转换成并行作业,MapReduce就提供了这种方案的一个具体实施框架。MapReduce:分布式计算的框架MapReduce是一个软件框架,可以将单个计算工作分配给多台计算机执行。工作流程包括map和reduce阶段。第一阶段,输入数据被切片分发到节点上,各个节点对本地数据进行处理对应的运算代码叫做mapper。第二阶段
吵吵人
·
2024-02-12 12:48
西瓜书
-机器学习5.4 全局最小与局部极小
两种“最优”:“局部极小”(localminimum)和"全局最小"(globalminimum)对和,若存在使得多组不同参数值初始化多个神经网络使用“模拟退火”:以一定的概率接受比当前解更差的结果,有助于“跳出”局部极小使用随机梯度下降遗传算法(geneticalgorithms)[Goldberg,1989]也常用来训练神经网络以上用于跳出局部极小的技术大多是启发式,理论上商缺乏保障。Gold
lestat_black
·
2024-02-12 11:32
西瓜书
机器学习
[培训-Python机器学习]04-Git的使用和规范
参考书Python
机器学习实战
作者裔隽张怿檬张目清出版社科学技术文献出版社难度入门安排计划:本章30分钟;作业:上网查阅Linus开发Git的背景;分析所在的开发团队所用的协作开发流程是什么?
乱码奇糟
·
2024-02-08 13:05
软件开发
git
[培训-Python机器学习]02-使用conda管理环境和包
参考书Python
机器学习实战
作者裔隽张怿檬张目清出版社科学技术文献出版社难度入门安排计划:本章30分钟;作业:培训后实践本章的各种操作;结果:以Python3.10创建开发虚拟环境;再创建一个Python3.7
乱码奇糟
·
2024-02-08 13:34
软件开发
python
conda
2019-05-14《
西瓜书
》难啃
周志华老师的《
西瓜书
:机器学习》这周看完1~10章锻炼:太极云手、100手/组,3组虎刨功(简)、100个/组,2组
杨熊猫Yang
·
2024-02-08 05:59
机器学习(machine learning)大合集
2、
机器学习实战
之AdaBoost算法boosting算法系列的基本思想,如下图:adaBoost分类器就是一种元算法分类器,adaBoost分类器利用同一种基
AI信仰者
·
2024-02-07 17:54
机器学习实战
朴素贝叶斯分类器
基于概率论的分类方法:朴素贝叶斯我的微信公众号:s406205391;欢迎大家一起学习,一起进步!!!k-近邻算法和决策树会给出“该数据属于哪一类”的明确回答。不过,分类器有时会产生错误结果,这是可以要求分类器给出一个最优的类别的猜测结果,同事给出这个猜测的概率估计值。朴素贝叶斯就是一个概率分类器。我们称之为“朴素”,是因为整个形式化的过程只做最原始、最简单的假设。朴素贝叶斯的优点:在数据较少的情
shenny_
·
2024-02-06 17:04
《
机器学习实战
》笔记(十三):Ch13 - 利用PCA来简化数据
第13章利用PCA来简化数据(代码)降维技术降维的意思是能够用一组个数为d的向量zi来代表个数为D的向量xi所包含的有用信息,其中d
Lornatang
·
2024-02-06 01:21
机器学习——集成学习
参考:ysu老师课件+
西瓜书
+期末复习笔记1.集成学习的基本概念集成学习(ensemblelearing)通过构建并结合多个学习器来完成学习任务。
三三木木七
·
2024-02-04 09:37
机器学习
集成学习
人工智能
西瓜书
学习笔记——低维嵌入(公式推导+举例应用)
文章目录算法介绍实验分析算法介绍低维嵌入(Low-DimensionalEmbedding)是一种降低高维数据维度的技术,目的是在保留数据特征的同时减少数据的复杂性。这种技术常用于可视化、特征学习、以及数据压缩等领域。低维嵌入的目标是将高维数据映射到一个低维空间,以便更好地理解和可视化数据。在kkk近邻学习中,随着数据维度的增加,样本之间的距离变得更加稀疏,导致KNN算法性能下降。这是因为在高维空
Nie同学
·
2024-02-04 01:13
机器学习
学习
笔记
机器学习
西瓜书
学习笔记——核化线性降维(公式推导+举例应用)
文章目录算法介绍实验分析算法介绍核化线性降维是一种使用核方法(KernelMethods)来进行降维的技术。在传统的线性降维方法中,例如主成分分析(PCA)和线性判别分析(LDA),数据被映射到一个低维线性子空间中。而核化线性降维则通过使用核技巧,将数据映射到一个非线性的低维空间中。核技巧的核心思想是通过一个非线性映射将原始数据转换到一个高维的特征空间,然后在该特征空间中应用线性降维方法。这种映射
Nie同学
·
2024-02-04 01:13
机器学习
学习
笔记
机器学习
西瓜书
学习笔记——k近邻学习(公式推导+举例应用)
文章目录算法介绍实验分析算法介绍K最近邻(K-NearestNeighbors,KNN)是一种常用的监督学习算法,用于分类和回归任务。该算法基于一个简单的思想:如果一个样本在特征空间中的kkk个最近邻居中的大多数属于某个类别,那么该样本很可能属于这个类别。KNN算法不涉及模型的训练阶段,而是在预测时进行计算。以下是KNN算法的基本步骤:选择K值:首先,确定用于决策的邻居数量K。K的选择会影响算法的
Nie同学
·
2024-02-04 01:42
机器学习
学习
笔记
机器学习
西瓜书
学习笔记——主成分分析(公式推导+举例应用)
文章目录算法介绍实验分析算法介绍主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的降维技术,用于在高维数据中发现最重要的特征或主成分。PCA的目标是通过线性变换将原始数据转换成一组新的特征,这些新特征被称为主成分,它们是原始特征的线性组合。对于一个正交属性空间(各个属性之间是线性无关的)中的样本点,存在以下两个性质的超平面可对所有样本点进行恰当的表达:最近重构性
Nie同学
·
2024-02-04 01:09
机器学习
学习
笔记
机器学习
降维
朴素贝叶斯分类算法
参考:
西瓜书
,ysu老师课件【摘要】1.分类算法:分类算法的内容是根据给定特征,求出它所属类别。2.先验概率:就是根据以往的数据分析所得到的概率。后验概率:是得到信息之后重新加以修正得到的概率。
三三木木七
·
2024-02-03 13:03
#
机器学习
机器学习
人工智能
sklearn
决策树的相关知识点
参考:ysu老师课件+
西瓜书
1.决策树的基本概念【决策树】:决策树是一种描述对样本数据进行分类的树形结构模型,由节点和有向边组成。
三三木木七
·
2024-02-03 13:03
#
机器学习
决策树
算法
机器学习
Python实现时间序列分析马尔可夫切换自回归模型(MarkovAutoregression算法)项目实战
说明:这是一个
机器学习实战
项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
胖哥真不错
·
2024-01-30 19:32
机器学习
python
python
机器学习
时间序列分析
马尔可夫切换自回归模型
项目实战
Python实现时间序列分析马尔可夫切换动态回归模型(MarkovRegression算法)项目实战
说明:这是一个
机器学习实战
项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
胖哥真不错
·
2024-01-30 19:31
机器学习
python
python
机器学习
时间序列分析
马尔可夫切换动态回归模型
项目实战
Python实现时间序列分析季节性自回归综合移动平均外生回归模型(SARIMAX算法)项目实战
说明:这是一个
机器学习实战
项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
胖哥真不错
·
2024-01-30 19:01
机器学习
python
python
时间序列分析
季节性自回归综合移动平均
外生回归模型
SARIMAX
项目实战
Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战
说明:这是一个
机器学习实战
项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
胖哥真不错
·
2024-01-30 19:00
机器学习
python
python
机器学习
时间序列分析AR定阶自回归模型
ar_select_order
项目实战
西瓜书
学习笔记——层次聚类(公式推导+举例应用)
文章目录算法介绍实验分析算法介绍层次聚类是一种将数据集划分为层次结构的聚类方法。它主要有两种策略:自底向上和自顶向下。其中AGNES算法是一种自底向上聚类算法,用于将数据集划分为层次结构的聚类。算法的基本思想是从每个数据点开始,逐步合并最相似的簇,直到形成一个包含所有数据点的大簇。这个过程被反复执行,构建出一个层次化的聚类结构。这其中的关键就是如何计算聚类簇之间的距离。但实际上,每个簇都是一个集合
Nie同学
·
2024-01-30 16:25
机器学习
学习
笔记
聚类
西瓜书
学习笔记——密度聚类(公式推导+举例应用)
文章目录算法介绍实验分析算法介绍密度聚类是一种无监督学习的聚类方法,其目标是根据数据点的密度分布将它们分组成不同的簇。与传统的基于距离的聚类方法(如K均值)不同,密度聚类方法不需要预先指定簇的数量,而是通过发现数据点周围的密度高度来确定簇的形状和大小。我们基于DBSCAN算法来实现密度聚类。DBSCAN是基于一组邻域参数(ϵ,MinPts)(\epsilon,MinPts)(ϵ,MinPts)来刻
Nie同学
·
2024-01-30 07:33
机器学习
学习
笔记
聚类
【机器学习·
西瓜书
学习笔记·线性模型】线性回归——最小二乘法(least square method)
线性模型的基本形式给定由个属性描述的实例,其中是在第个属性上的取值,线性模型(linearmodel)试图学得一个通过属性的线性组合来进行预测的函数,即一般用向量形式写成:和确定后,模型就得以确定参数查阅表把数据集表示为一个m*(d+1)大小的矩阵,其中每行对应于一个实例,每行前d个元素对应于实例的d个属性值,最后一个元素恒置于1,即(一)均方误差(meansquarederror)基于欧几里得距
慈善区一姐
·
2024-01-29 12:34
机器学习
学习
线性回归
如何系统学习机器学习?
以下是一些推荐的书籍:《动手学机器学习》,"
西瓜书
"作者周志华力荐的机器学习入门书。本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。本书包含4个部分:第一部分为机器
人邮异步社区
·
2024-01-28 14:23
学习
机器学习
人工智能
西瓜书
学习笔记——原型聚类(公式推导+举例应用)
文章目录k均值算法算法介绍实验分析学习向量量化(LVQ)算法介绍实验分析高斯混合聚类算法介绍实验分析总结k均值算法算法介绍给定样本集D={x1,x2,...,xm}D=\{x_1,x_2,...,x_m\}D={x1,x2,...,xm},k均值算法针对聚类算法所得簇划分C={C1,C2,...,Ck}\mathcal{C}=\{C_1,C_2,...,C_k\}C={C1,C2,...,Ck}最
Nie同学
·
2024-01-28 07:18
机器学习
学习
笔记
聚类
python
机器学习实战
|机器学习入门笔记3-Pandas基础知识
文章目录1.Pandas介绍2.案例知识点2.1创建DataFrame2.2创建日期3.DataFrame介绍3.1DataFrame属性3.2DataFrame设置索引3.3基本数据操作3.4DataFrame运算1.Pandas介绍开源的数据挖掘库,用于数据探索,封装了matplotlib,numpy2.案例知识点2.1创建DataFramepd.DataFrame(ndarray,index
小赵同学871
·
2024-01-27 11:40
机器学习实战入门笔记
python
机器学习
pandas
Python实现离散选择概率模型(Probit算法)项目实战
说明:这是一个
机器学习实战
项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
胖哥真不错
·
2024-01-24 04:03
机器学习
python
python
离散选择概率模型
Probit算法
机器学习
项目实战
大数据学习之路
因为这句话,我又一次的陷入迷茫,我不清楚自己是不是应该继续的Java,所以那段时间我干过爬虫,也撸了一阵子的
西瓜书
和统计学什么的。在知乎上所有相关的问题和答案我都看了,也
金光闪闪耶
·
2024-01-24 00:57
西瓜书
学习笔记——Boosting(公式推导+举例应用)
文章目录引言AdaBoost算法AdaBoost算法正确性说明AdaBoost算法如何解决权重更新问题?AdaBoost算法如何解决调整下一轮基学习器样本分布问题?AdaBoost算法总结实验分析引言Boosting是一种集成学习方法,旨在通过整合多个弱学习器来构建一个强学习器。其核心思想是迭代训练模型,关注之前被错误分类的样本,逐步提升整体性能。Boosting的代表算法包括AdaBoost、G
Nie同学
·
2024-01-24 00:26
机器学习
学习
笔记
boosting
机器学习实战
K-近邻算法
K-近邻算法优点:精度高、对异常值不敏感、无数据输入假定缺点:计算复杂高、空间复杂度高适用数据范围:数值型和标称型一般流程收集数据:可以使用任何方法准备数据:距离计算所需要的数值,最好是结构化的数据结构分析数据:可以使用任何方法训练算法:此步骤不适用于K-近邻算法测试算法:计算错误率使用算法:首先需要输入样本数据和结构化的输出结果,然后运行K-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出
今昔何夕丶
·
2024-01-23 11:48
Python实现稳健线性回归模型(rlm算法)项目实战
说明:这是一个
机器学习实战
项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景稳健回归可以用在任何使用最小二乘回归的情况下。
胖哥真不错
·
2024-01-22 11:02
机器学习
python
python
机器学习
稳健线性回归模型
rlm算法
项目实战
机器学习实战
学习记录(github)
机器学习实战
学习记录(github)可见我的github:https://github.com/monkeyhlj/machine_learning_bymyself刚刚建好,后面的学习记录会一直在这个仓库里面更新
monkeyhlj
·
2024-01-22 07:00
学习
【
机器学习实战
】决策树
算法思路在构造决策树时,第一个需要解决的问题就是,如何确定出哪个特征在划分数据分类是起决定性作用,或者说使用哪个特征分类能实现最好的分类效果。这样,为了找到决定性的特征,划分得到最好的结果,我们就需要评估每个特征。当找到最优特征后,依此特征,数据集就被划分为几个数据子集,这些数据自己会分布在该决策点的所有分支中。此时,如果某个分支下的数据属于同一类型,则该分支下的数据分类已经完成,无需进行下一步的
吵吵人
·
2024-01-21 23:58
Python实现基于多元线性回归模型进行统计学相互作用和方差分析(anova算法)项目实战
说明:这是一个
机器学习实战
项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
胖哥真不错
·
2024-01-21 16:57
机器学习
python
线性回归
人工智能
机器学习
python
相互作用
方差分析
anova算法
Python实现基于广义线性回归模型进行Meta分析(meta_analysis算法)项目实战
说明:这是一个
机器学习实战
项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
胖哥真不错
·
2024-01-21 16:26
机器学习
python
线性回归
python
机器学习
广义线性回归模型
Meta分析
meta_analysis算法
项目实战
Python实现GEE嵌套协方差结构仿真模型(GEE算法)项目实战
说明:这是一个
机器学习实战
项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
胖哥真不错
·
2024-01-21 16:56
机器学习
python
python
机器学习
GEE嵌套协方差结构仿真模型
GEE算法
项目实战
Python实现M-Estimators稳健线性回归模型(RLM算法)项目实战
说明:这是一个
机器学习实战
项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
胖哥真不错
·
2024-01-21 16:23
机器学习
python
python
机器学习
M-Estimators
稳健线性回归模型
RLM算法
浙江大学《机器学习》笔记——神经网络(Neural Network)【上】
写在前面·最近在学习《机器学习》.主要是看浙江大学胡浩基老师的网课,结合周志华老师的
西瓜书
来学.为了理清思路和推公式就敲了这样一个读书笔记.初次学习难免会有错漏,欢迎批评指正.这份笔记主要用途还是用来自己复习回顾
啵啵啵啵哲
·
2024-01-20 18:54
机器学习笔记
神经网络
机器学习
人工智能
西瓜书
读书笔记整理(十二) —— 第十二章 计算学习理论
第十二章计算学习理论(上)12.1基础知识12.1.1什么是计算学习理论(computationallearningtheory)12.1.2什么是独立同分布(independentandidenticallydistributed,简称i.i.d.i.i.d.i.i.d.)以及独立同分布样本12.1.3泛化误差以及经验误差12.1.4相关数学定义表示12.1.5误差参数12.1.6映射与样本集是
smile-yan
·
2024-01-20 18:23
机器学习
西瓜书
计算学习理论
PAC
python自学(二)第二章 正则表达式|字符串匹配、函数和面向对象程序设计
《机器学习》周志华(
西瓜书
)清华大学出版社;least14p/d;3.BiliBili《和美女老师一起学python》视频。(一)正则
BrilandLiu
·
2024-01-19 11:38
python
python
编程语言
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他