【论文阅读笔记】Traj-MAE: Masked Autoencoders for Trajectory Prediction
Abstract通过预测可能的危险,轨迹预测一直是构建可靠的自动驾驶系统的关键任务。一个关键问题是在不发生碰撞的情况下生成一致的轨迹预测。为了克服这一挑战,我们提出了一种有效的用于轨迹预测的掩蔽自编码器(Traj-MAE),它能更好地代表驾驶环境中智能体的复杂行为。具体来说,我们的Traj-MAE采用了多种掩蔽策略来预训练轨迹编码器和地图编码器,允许捕获智能体之间的社会和时间信息,同时利用来自多个