E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
Mahout机器学习笔记
机器学习笔记
- 从2D数据合成3D数据
一、3D数据简介人们一致认为,从单一角度合成3D数据是人类视觉的一项基本功能,这对计算机视觉算法来说极具挑战性。但随着LiDAR、RGB-D相机(RealSense、Kinect)和3D扫描仪等3D传感器的可用性和价格的提高,3D采集技术的最新进展取得了巨大飞跃。与广泛使用的2D数据不同,3D数据具有丰富的尺度和几何信息,从而为机器更好地理解环境提供了机会。然而,与2D数据相比,3D数据的可用性相
坐望云起
·
2024-01-04 08:50
深度学习从入门到精通
深度学习
3D
点云
人工智能
Transformer
语义特征
3D合成
简易
机器学习笔记
(七)计算机视觉基础 - 常用卷积核和简单的图片的处理
前言这里实际上涉及到了挺多有关有关理论的东西,可以详细看一下paddle的官方文档。不过我这里不过多的谈有关理论的东西。【低层视觉】低层视觉中常见的卷积核汇总图像处理中常用的卷积核在代码中,我们实际上是用不同的卷积核来造成不同的影响,我这里也是paddle中对于卷积核的几个比较简单的应用。什么是卷积核?如果你不考虑卷积核的计算,可以简单的将卷积核理解成一个矩阵,这个矩阵维度的大小和取值的不同会导致
Leventure_轩先生
·
2024-01-04 06:29
不涉及理论的简易机器学习笔记
机器学习
笔记
人工智能
机器学习笔记
一
一、什么是机器学习(一)机器学习定义一:计算机通过非显著性编程获得的学习能力。非显著性编程指的是:计算机自己从经验中总结出相关的规律。显著性编程:需要人为把机器人所处的环境调查清楚。例如:1)让计算机区分菊花与玫瑰花。显著性编程:直接给出菊花与玫瑰花的特点非显著性编程:通过大量图片,计算机总结两种花的特征规律,进行区分2)让机器人冲咖啡显著性编程:我们要判断往哪走,什么时候停,什么时候开始冲咖啡等
唐豆豆*
·
2024-01-04 00:45
机器学习
机器学习
笔记
人工智能
推荐系统中协同过滤算法实现分析
2019独角兽企业重金招聘Python工程师标准>>>原创博客,欢迎转载,转载请注明:http://my.oschina.net/BreathL/blog/62519最近研究
Mahout
比较多,特别是里面协同过滤算法
weixin_33853794
·
2024-01-03 23:12
人工智能
python
数据库
机器学习笔记
三——强化学习的V值计算
一、蒙特卡诺采样回溯计算V值把智能体放入环境的任意状态——从这个状态开始按照策略进行动作选择,并进入新状态——重复步骤2,直至进入最终状态——从最终状态往前回溯,计算每个状态的G值——重复1~4状态多次,平均每个状态的G值,这就是所需的V值1.具体G值计算如下:按照策略往后走,过程中不进行计算,只记录每一步的奖惩r从终点往前走,到某一状态获得的奖励总和就是G值。此时G=r+gamma*G_1,即这
唐豆豆*
·
2024-01-03 15:09
机器学习
算法
机器学习
机器学习笔记
二——强化学习
一、什么是强化学习强化学习就是让智能体可以独立自主的完成某个任务。独立自主指的就是不需要人去指挥。比如扫地机器人,打开开关就会自动去清理。自动驾驶的汽车,在定好目的地后,可以自动安全达到目的地。强化学习的过程Agent(智能体)——产生Action(行动)——Environment(环境)——产生newstate(状态)以及reward(奖惩)——返给Agent强化学习的本质:学习的是一种策略Po
唐豆豆*
·
2024-01-03 08:26
机器学习
笔记
机器人
机器学习
2023春季李宏毅
机器学习笔记
01 :正确认识 ChatGPT
资料课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800一、对Chat
女王の专属领地
·
2024-01-03 06:45
深度学习
机器学习
机器学习
李宏毅
人工智能
AI产品
简易
机器学习笔记
(四)初识卷积神经网络
前言第一次写卷积神经网络,也是照着paddlepaddle的官方文档抄,这里简单讲解一下心得。首先我们要知道之前写的那些东西都是什么,之前写的我们称之为简单神经网络,也就是简单一层连接输出和输出,通过前向计算和逆向传播,以及梯度下降的方式让结果慢慢滑向我们期望的终点。这种方法固然好,但是它的限制也是显而易见的:需要我们提供损失函数需要对数据进行相当大量的计算只能处理线性函数,而对非线性的函数处理能
Leventure_轩先生
·
2024-01-03 05:40
不涉及理论的简易机器学习笔记
机器学习
笔记
cnn
简易
机器学习笔记
(六)不同优化算法器
前言我们之前不是说了有关梯度下降公式的事嘛,就是那个这样梯度下降公式涉及两个问题,一是梯度下降的策略,二是涉及到参数的选择,如果我们选择固定步长的时候,就会发现我们求的值一直在最小值左右震荡,很难选择到我们期望的值。假设上图中,x0为我们期望的极小值,yB=xA-yA’xA的时候,xB实际上蹿到了极小值的右侧去了,当我们yC=xB-yB’xB的时候,我们求的yC又跑到极小值的左边去了,反正就是一直
Leventure_轩先生
·
2024-01-03 05:40
不涉及理论的简易机器学习笔记
机器学习
笔记
算法
简易
机器学习笔记
(五)更换损失函数:交叉熵
前言我们之前用的是均方差作为我们神经网络的损失函数评估值,但是我们对于结果,比如给定你一张应该是0的照片,它识别成了6,这个时候这个均方差表达了什么特别的含义吗?显然你识别成6并不代表它比识别成1的情况误差更大。所以说我们需要一种全新的方式,基于概率的方案来对结果进行规范。也就是我们说的交叉熵损失函数。至于什么是交叉熵损失函数,由于本文不涉及实际的数学论证,感兴趣可以看这个简单的小视频:你真的理解
Leventure_轩先生
·
2024-01-03 05:07
不涉及理论的简易机器学习笔记
机器学习
笔记
人工智能
机器学习笔记
- 什么是匈牙利算法?有什么用处?
一、什么是匈牙利算法?匈牙利算法是一种优化算法,可以在多项式时间内解决分配问题。该算法也被称为Kuhn-Munkres算法或Munkres分配算法。匈牙利算法由以下四个步骤组成。前两个步骤执行一次,而步骤3和4则重复执行,直到找到最佳分配。该算法的输入是一个仅包含非负元素的n×n方阵。步骤1:减去行最小值对于每一行,找到最低的元素并从该行中的每个元素中减去它。第2步:减去列最小值<
坐望云起
·
2024-01-02 12:13
深度学习从入门到精通
算法
匈牙利算法
优化算法
最优化问题
机器学习笔记
- 基于Python的不平衡数据的欠采样技术
一、简述随着从不同的来源生成和捕获大量数据。尽管信息量巨大,但它往往反映了现实世界现象的不平衡分布。数据不平衡的问题不仅仅是统计上的挑战,它对数据驱动模型的准确性和可靠性具有深远的影响。以金融行业欺诈检测为例。尽管我们希望避免欺诈,因为其具有高度破坏性,但机器(甚至人类)不可避免地需要从欺诈交易的示例中学习(尽管很少见),以将其与日常合法交易的数量区分开来。欺诈性交易和非欺诈性交易之间的数据分布不
坐望云起
·
2024-01-01 09:55
深度学习从入门到精通
机器学习
欠采样
压缩最近邻采样
NearMiss
Python
Tomek
Links
机器学习笔记
--DeepWalk和Node2Vec图嵌入代码实战一
斯坦福大学CS224W图
机器学习笔记
学习参考CS224W公开课:双语字幕斯坦福CS224W《图机器学习》课程(2021)byJureLeskove官方课程主页:官方主页子豪兄精讲:斯坦福CS224W图机器学习
北航程序员小C
·
2024-01-01 02:27
人工智能学习专栏
机器学习专栏
深度学习专栏
机器学习
笔记
人工智能
机器学习笔记
--PageRank算法
斯坦福大学CS224W图
机器学习笔记
学习参考CS224W公开课:双语字幕斯坦福CS224W《图机器学习》课程(2021)byJureLeskove官方课程主页:官方主页子豪兄精讲:斯坦福CS224W图机器学习
北航程序员小C
·
2023-12-29 21:23
机器学习专栏
深度学习专栏
人工智能学习专栏
机器学习
笔记
算法
机器学习笔记
--PageRank
斯坦福大学CS224W图
机器学习笔记
学习参考CS224W公开课:双语字幕斯坦福CS224W《图机器学习》课程(2021)byJureLeskove官方课程主页:官方主页子豪兄精讲:斯坦福CS224W图机器学习
北航程序员小C
·
2023-12-29 21:22
人工智能学习专栏
机器学习专栏
深度学习专栏
机器学习
笔记
人工智能
机器学习笔记
--半监督节点分类:标签传播和消息传递
斯坦福大学CS224W图
机器学习笔记
学习参考CS224W公开课:双语字幕斯坦福CS224W《图机器学习》课程(2021)byJureLeskove官方课程主页:官方主页子豪兄精讲:斯坦福CS224W图机器学习
北航程序员小C
·
2023-12-29 21:20
深度学习专栏
人工智能学习专栏
机器学习专栏
机器学习
笔记
分类
机器学习笔记
(11):贝叶斯学习(1)
本文来自之前在Udacity上自学机器学习的系列笔记。这是第11篇,介绍了监督学习中的贝叶斯学习模型(1)。朴素贝叶斯朴素贝叶斯是一个分类模型,如下图所示,有正反两类样本数据点,该模型寻找出一个决策边界正确地将两类数据分隔开来。模型的背后是贝叶斯规则。image.png在sklearn上面有参考的代码:https://scikit-learn.org/stable/modules/generate
链原力
·
2023-12-29 09:33
机器学习笔记
机器学习黑马程序员3天快速入门python机器学习_哔哩哔哩_bilibili1.概述1.1机器学习、人工智能、深度学习关系机器学习是人工智能的一个实现途径深度学习是机器学习一个方法发展而来1.2定义机器学习是从数据中自动获得模型,并利用模型对未知数据进行预测。数据模型预测1.3算法分类数据集:特征值+目标值1.3.1监督学习目标值分类类别分类问题连续型的数据回归问题(1)分类K-近邻算法、贝叶斯
王小白学习
·
2023-12-29 08:18
机器学习
学习
python
机器学习笔记
--NetworkX代码实战
斯坦福大学CS224W图
机器学习笔记
学习参考CS224W公开课:双语字幕斯坦福CS224W《图机器学习》课程(2021)byJureLeskove官方课程主页:官方主页子豪兄精讲:斯坦福CS224W图机器学习
Runjavago
·
2023-12-28 15:35
人工智能学习专栏
机器学习专栏
深度学习专栏
机器学习
笔记
人工智能
机器学习笔记
--图嵌入表示学习
斯坦福大学CS224W图
机器学习笔记
学习参考CS224W公开课:双语字幕斯坦福CS224W《图机器学习》课程(2021)byJureLeskove官方课程主页:官方主页子豪兄精讲:斯坦福CS224W图机器学习
Runjavago
·
2023-12-28 15:35
深度学习专栏
机器学习专栏
人工智能学习专栏
机器学习
笔记
学习
机器学习笔记
--DeepWalk和Node2Vec图嵌入二
斯坦福大学CS224W图
机器学习笔记
学习参考CS224W公开课:双语字幕斯坦福CS224W《图机器学习》课程(2021)byJureLeskove官方课程主页:官方主页子豪兄精讲:斯坦福CS224W图机器学习
Runjavago
·
2023-12-28 15:35
深度学习专栏
机器学习专栏
人工智能学习专栏
机器学习
笔记
人工智能
机器学习笔记
--图的基本表示和特征工程
斯坦福大学CS224W图
机器学习笔记
学习参考CS224W公开课:双语字幕斯坦福CS224W《图机器学习》课程(2021)byJureLeskove官方课程主页:官方主页子豪兄精讲:斯坦福CS224W图机器学习
Runjavago
·
2023-12-28 15:30
机器学习专栏
深度学习专栏
人工智能学习专栏
机器学习
笔记
人工智能
斯坦福大学CS224W图
机器学习笔记
斯坦福大学CS224W图
机器学习笔记
学习参考CS224W公开课:双语字幕斯坦福CS224W《图机器学习》课程(2021)byJureLeskove官方课程主页:官方主页子豪兄精讲:斯坦福CS224W图机器学习
Runjavago
·
2023-12-28 11:00
深度学习专栏
机器学习专栏
人工智能学习专栏
机器学习
笔记
人工智能
机器学习笔记
- 线性判别分析(LDA)的原理和应用
一、LDA简述线性判别分析(LDA)是监督机器学习中用于解决多类分类问题的一种方法。LDA通过数据降维来分离具有多个特征的多个类。这项技术在数据科学中很重要,因为它有助于优化机器学习模型。线性判别分析,也称为正态判别分析(NDA)或判别函数分析(DFA),遵循生成模型框架。LDA算法对每个类别的数据分布进行建模,并使用贝叶斯定理对新数据点进行分类。LDA算法通过使用贝叶斯计算输入数据集是否属于特定
坐望云起
·
2023-12-26 15:32
深度学习从入门到精通
人工智能
机器学习
LDA
线性判别分析
机器学习笔记
2-基于KNN算法的手写字识别程序
importnumpyimportoperatorimportosfromPILimportImagedefclassify(inX,dataSet,labels,k=3):'''算法的实现'''dataSetSize=dataSet.shape[0]diffMat=numpy.tile(inX,(dataSetSize,1))-dataSetsqDiffMat=diffMat**2sqDista
冯子玉
·
2023-12-26 08:22
机器学习和人工智能
puthon函数
python
机器学习
knn
手写字识别
机器学习笔记
八:Matlab实现神经网络的手写数字识别
OctaveCode需要解决的问题(3个):1.数据加载及可视化1.1displayData.m2.参数加载3.基于前向传播算法计算代价4.正则化4.1nnCostFunction.m5.梯度下降函数5.1sigmoid.m5.2sigmoidGradient.m6.初始化参数6.1randInitializeWeights.m7.后向传播算法实现7.1checkNNGradients.m8.后向
Amyniez
·
2023-12-26 08:20
机器学习
机器学习
神经网络
人工智能
机器学习笔记
(三)简单手写识别
目标实现一个简单的手写识别的脚本,同样的,流程分五步走:读入数据初始化模型训练模型训练样本集乱序校验数据有效性前期准备前期需要将库导入,还需要进行一些初始化操作#数据处理部分之前的代码,加入部分数据处理的库点击查看代码#加载飞桨和相关类库importpaddlefrompaddle.nnimportLinearimportpaddle.nn.functionalasFimportosimportn
Leventure_轩先生
·
2023-12-26 08:47
机器学习
笔记
人工智能
机器学习笔记
- week5 -(九、神经网络的学习 Part1)
9.1代价函数在神经网络的学习中,我们需要用到新的标记方法,假设神经网络的训练样本有个,每个包含一组输入和一组输出信号:表示神经网络层数表示每层的neuron个数(表示输出层神经元个数)代表最后一层中处理单元的个数。神经网络的分类定义为两种情况:二类分类和多类分类:二类分类:,0和1对应表示二分类中的一类;类分类:表示分到第类;我们回顾逻辑回归问题中我们的代价函数为:在逻辑回归中,我们只有一个输出
火箭蛋头
·
2023-12-26 00:46
大师兄的Python
机器学习笔记
:特征提取
大师兄的Python
机器学习笔记
:Pandas库一、关于分类(Classification)1.什么是分类分类是机器学习的重要模块,主要用来预测数据的类别标签。
superkmi
·
2023-12-25 13:38
机器学习笔记
(二)使用paddlepaddle,再探波士顿房价预测
目标用paddlepaddle来重写之前那个手写的梯度下降方案,简化内容流程实际上就做了几个事:数据准备:将一个批次的数据先转换成nparray格式,再转换成Tensor格式前向计算:将一个批次的样本数据灌入网络中,计算出结果计算损失函数:以前向计算的结果和真是房价作为输入,通过算是函数sqare_error_cost计算出损失函数。反向传播:执行梯度反向传播backward函数,即从后到前逐层计
Leventure_轩先生
·
2023-12-23 16:52
机器学习
笔记
paddlepaddle
机器学习笔记
(一)从波士顿房价预测开始,梯度下降
从波士顿房价开始目标其实这一章节比较简单,主要是概念,首先在波士顿房价这个问题中,我们假设了一组线性关系,也就是如图所示我们假定结果房价和这些参数之间有线性关系,即:然后我们假定这个函数的损失函数为均方差,即:那么就是说,我们现在是已知y和x,来求使得这个损失函数Loss最小化的一个w和b的组合读取数据点击查看代码defload_data():#从文件导入数据datafile='./work/ho
Leventure_轩先生
·
2023-12-23 09:37
机器学习
笔记
python
大数据分析- 基于Hadoop/
Mahout
的大数据挖掘
随着互联网、移动互联网和物联网的发展,我们已经切实地迎来了一个大数据的时代。大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求。目前对大数据的分析工具,首选的是Hadoop平台。Hadoop在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。一、培训对象1,系统架构师、系
shenmanli
·
2023-12-21 06:58
大数据
hadoop
数据挖掘
行业应用
开发人员
“大数据分析挖掘-基于Hadoop/
Mahout
/Mllib的大数据挖掘(含Spark、Storm和Docker应用介绍)”培训
随着互联网、移动互联网和物联网的发展,我们已经切实地迎来了一个大数据的时代。大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求。目前对大数据的分析工具,首选的是Hadoop/Yarn平台。Hadoop/Yarn在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。为解决广大
shenmanli
·
2023-12-21 06:58
培训课程
公开课
企业培训
大数据
hadoop
spark
机器学习笔记
:支持向量机回归SVR
1主要思想主要思路类似于
机器学习笔记
:支持向量机SVM_支撑向量学习-CSDN博客和SVM的区别主要有解法和SVM区别不大,也是KKT2和线性回归的区别对SVR,如果f(x)和y之间的差距小于阈值ε【也即落在两条间隔带之间
UQI-LIUWJ
·
2023-12-20 23:16
机器学习
机器学习
笔记
支持向量机
Coursera
机器学习笔记
3
Week44.1神经网络模型表示1神经网络可以分为三部分:(输入)树突、(logistic)激励、(输出)轴突。一个简单的模型如下图。image1.pngx0通常为1,第一层为输入层;在这个例子中,中间层为ai(2)。第j个权重矩阵决定了第j层到第j+1层的调整,如果第j层有s(j)个单元,第j+1层有s(j+1)个单元,则第j个权重矩阵的维度是s(j+1)*(s(j)+1)image1.png4
los_pollos
·
2023-12-18 22:22
机器学习笔记
1.什么是机器学习从数据中自动分析获得模型,并利用模型对位置数据进行预测。关键词:数据模型预测2.机器学习算法分类2.1监督学习数据集有标签监督学习三要素:模型算法策略2.1.1分类classification离散型数据常用算法:Knn,朴素贝叶斯,svm,决策树与随机森林,逻辑回归2.1.2回归regression连续型数据常用算法:线性回归,岭回归2.2非监督学习数据集无标签常用算法:聚类,K
偏偏偏执先生
·
2023-12-17 17:40
机器学习笔记
- 了解学习率对神经网络性能的影响
一、简述深度学习神经网络使用随机梯度下降优化算法进行训练。学习率是一个超参数,它控制每次更新模型权重时响应估计误差而改变模型的程度。学习率值太小可能会导致训练过程过长并可能陷入困境,而值太大可能会导致过快地学习次优权重或训练过程不稳定。配置神经网络时,学习率是重要的超参数。因此,了解学习率对模型性能的影响很有价值。训练期间权重更新的量称为步长或“学习率”。二、不同学习率的评估在此示例中,我们从1E
坐望云起
·
2023-12-16 14:33
深度学习从入门到精通
深度学习
人工智能
学习率
梯度下降
自适应学习率
神经网络
springboot集成
mahout
实现简单基于协同过滤算法的文章推荐算法
文章目录参考文章前言1.建表并且生成一些数据首先,建立一个用户文章操作表(user_article_operation)使用casewhen语句简单统计数据2.代码与测试只需要根据表生成相应实体类(注意要加一个value属性来存储分数)主要代码如下,其实就两个方法userArticleOperationMapper.getAllUserPreference()方法收集数据mapper文件如下测试算
程序个人练习生
·
2023-12-15 13:23
开源项目学习
算法
spring
boot
推荐算法
机器学习笔记
:linear scaling learning rate (学习率 和batch size的关系)
在训练神经网络的过程中,随着batchsize的增大,处理相同数据量的速度会越来越快,但是达到相同精度所需要的epoch数量越来越多换句话说,使用相同的epoch数量时,大batchsize训练的模型与小batchsize训练的模型相比,验证准确率会减小——>提出了linearscalinglearningrate在mini-batchSGD训练时,增大batchsize不会改变梯度的期望,但是会
UQI-LIUWJ
·
2023-12-15 12:59
机器学习
机器学习
笔记
人工智能
【23-24 秋学期】NNDL 作业11 LSTM
习题6-4推导LSTM网络中参数的梯度,并分析其避免梯度消失的效果习题6-3P编程实现下图LSTM运行过程李宏毅
机器学习笔记
:RNN循环神经网络_李宏毅rnn笔记_ZEERO~的博客-CSDN博客https
HBU_David
·
2023-12-04 15:03
lstm
机器学习
人工智能
机器学习笔记
- 什么是3D语义场景完成/补全?
一、什么是3D语义场景补全?3D语义场景完成(SemanticSceneCompletion)是一种机器学习任务,涉及以体素化形式预测给定环境的完整3D场景(完成3D形状的同时推断场景的3D语义分割的任务)。这是通过使用深度图和为场景提供上下文的可选RGB图像来完成的。目标是以一种可轻松用于各种应用的方式提供环境的准确表示。这项任务的关键是场景的语义方面。输出中的每个体素代表环境中的某个物体或障碍
坐望云起
·
2023-12-04 06:29
深度学习从入门到精通
机器学习
人工智能
3D语义场景完成
体素化
3D语义分割
机器学习笔记
-支持向量机
文章目录前言一、支持向量机介绍二、线性可分SVM2.1.SVM数学模型的推导2.2.拉格朗日数乘法与对偶问题转换2.3.线性可分SVM学习算法三、线性不可分SVM3.1.线性不可分与软间隔3.2.线性不可分SVM学习算法四、非线性SVM4.1.非线性分类问题4.2.核函数4.3.非线性SVM学习算法总结前言 终于到支持向量机这一分类算法了,支持向量机是所有入门机器学习小伙伴必须掌握的算法之一,我
复杂混沌
·
2023-12-03 19:50
机器学习笔记
机器学习
支持向量机
人工智能
机器学习笔记
(九)——手撕支持向量机SVM之间隔、对偶、KKT条件详细推导
SVM概述支持向量机(SVM)是一种有监督的分类算法,并且它绝大部分处理的也是二分类问题,先通过一系列图片了解几个关于SVM的概念。上图中有橙色点和蓝色点分别代表两类标签,如果想要将其分类,需要怎么做呢?可能有的伙伴会想到上一篇文章讲到的逻辑回归拟合决策边界,这肯定是一种不错的方法,本文所讲的SVM也是可以解决这种分类问题的;既然都是分类算法,所以通过一个例子可以比对出二者的相同点和不同点。超平面
奶糖猫Esong
·
2023-12-03 19:49
机器学习
机器学习
python
人工智能
支持向量机
算法
机器学习笔记
- 基于百度飞桨PaddleSeg的人体分割模型以及TensorRT部署说明
一、简述虽然SegmentAnything用于图像分割的通用大模型看起来很酷(飞桨也提供分割一切的模型),但是个人感觉落地应用的时候心里还是更倾向于飞桨这种场景式的,因为需要用到一些人体分割的需求,所以这里主要是对飞桨高性能图像分割开发套件进行了解和使用,但是暂时不训练,因为搞数据集挺费劲。PaddleSeg内置45+模型算法及140+预训练模型。最新发布HumanSeglite模型超轻量级人像分
坐望云起
·
2023-12-02 18:34
深度学习从入门到精通
OpenCV从入门到精通
paddlepaddle
人工智能
分割模型
人体识别
深度学习
百度飞桨
李宏毅老师机器学习课程笔记_ML Lecture 1: ML Lecture 1: Regression - Demo
视频链接(bilibili):李宏毅机器学习(2017)另外已经有有心的同学做了速记并更新在github上:李宏毅
机器学习笔记
(LeeML-Notes)所以,接下来我的笔记只记录一些我自己的总结和听课当时的
leogoforit
·
2023-12-02 17:21
机器学习笔记
- week6 -(十、应用机器学习的建议)
10.1决定下一步做什么假设我们需要用一个线性回归模型来预测房价,当我们运用训练好了的模型来预测未知数据的时候发现有较大的误差,我们下一步可以做什么?获得更多的训练样本——通常是有效的,但代价较大,下面的方法也可能有效,可考虑先采用下面的几种方法。尝试减少特征的数量尝试获得更多的特征尝试增加多项式特征尝试减少正则化程度尝试增加正则化程度我们不应该随机选择上面的某种方法来改进我们的算法,而是运用一些
火箭蛋头
·
2023-12-02 16:14
机器学习笔记
4:Logistic 回归模型
Logistic回归的基本原理logistic回归的优化算法前言:在分类任务中,我们是通过从输入xxx到输出yyy的映射fff的模型得出来的:y^=f(x)=argmaxp(y=c∣x,D)\hat{y}=f(x)=argmaxp(y=c|\mathbf{x},D)y^=f(x)=argmaxp(y=c∣x,D)其中,我们定义yyy为离散值,其取值范围称之为标签空间:y={1,2,..,C}y=\
陆撄宁
·
2023-11-28 15:50
机器学习
机器学习
logistic回归
线性回归
机器学习笔记
五—机器学习攻击与防御
系列文章目录
机器学习笔记
一—机器学习基本知识
机器学习笔记
二—梯度下降和反向传播
机器学习笔记
三—卷积神经网络与循环神经网络
机器学习笔记
四—机器学习可解释性
机器学习笔记
五—机器学习攻击与防御
机器学习笔记
六—
江_小_白
·
2023-11-27 19:03
机器学习
深度学习
神经网络
机器学习
机器学习笔记
05---SVM支持向量机
支持向量机(SupportVectorMachine,SVM)是一类按监督学习(supervisedlearning)方式对数据进行二元分类的广义线性分类器(generalizedlinearclassifier),其决策边界是对学习样本求解的最大边距超平面(maximum-marginhyperplane)。SVM被提出于1964年,在二十世纪90年代后得到快速发展并衍生出一系列改进和扩展算法,
一件迷途小书童
·
2023-11-27 09:15
Machine
Learning
支持向量机
机器学习
人工智能
基于android平台的笔记簿,
机器学习笔记
簿 降维篇 LDA 01
机器学习中包含了两种相对应的学习类型:无监督学习和监督学习。无监督学习指的是让机器只从数据出发,挖掘数据本身的特性,对数据进行处理,PCA就属于无监督学习,因为它只根据数据自身来构造投影矩阵。而监督学习将使用数据和数据对应的标签,我们希望机器能够学习到数据和标签的关系,例如分类问题:机器从训练样本中学习到数据和类别标签之间的关系,使得在输入其它数据的时候,机器能够把这个数据分入正确的类别中。线性鉴
王润莲
·
2023-11-25 14:07
基于android平台的笔记簿
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他