Eigen(4)矩阵基本运算

矩阵和向量的运算

    提供一些概述和细节:关于矩阵、向量以及标量的运算。

1. 介绍

    Eigen提供了matrix/vector的运算操作,既包括重载了c++的算术运算符+/-/*,也引入了一些特殊的运算比如点乘dot、叉乘cross等。

    对于Matrix类(matrixvectors)这些操作只支持线性代数运算,比如:matrix1*matrix2表示矩阵的乘机,vetor+scalar是不允许的。如果你想执行非线性代数操作,请看下一篇(暂时放下)。

2. 加减

    左右两侧变量具有相同的尺寸(行和列),并且元素类型相同(Eigen不自动转化类型)操作包括:

  • 二元运算 + a+b
  • 二元运算 - a-b
  • 一元运算 - -a
  • 复合运算 += a+=b
  • 复合运算 -= a-=b
#include 

#include 

using namespace Eigen;

int main()

{

  Matrix2d a;

  a << 1, 2,

       3, 4;

  MatrixXd b(2,2);

  b << 2, 3,

       1, 4;

  std::cout << "a + b =\n" << a + b << std::endl;

  std::cout << "a - b =\n" << a - b << std::endl;

  std::cout << "Doing a += b;" << std::endl;

  a += b;

  std::cout << "Now a =\n" << a << std::endl;

  Vector3d v(1,2,3);

  Vector3d w(1,0,0);

  std::cout << "-v + w - v =\n" << -v + w - v << std::endl;

}

输出:

a + b =

3 5

4 8

a - b =

-1 -1

 2  0

Doing a += b;

Now a =

3 5

4 8

-v + w - v =

-1

-4

-6

3. 标量乘法和除法

    乘/除标量是非常简单的,如下:

  • 二元运算 * matrix*scalar
  • 二元运算 * scalar*matrix
  • 二元运算 / matrix/scalar
  • 复合运算 *= matrix*=scalar
  • 复合运算 /= matrix/=scalar
#include 

#include 

using namespace Eigen;

int main()

{

  Matrix2d a;

  a << 1, 2,

       3, 4;

  Vector3d v(1,2,3);

  std::cout << "a * 2.5 =\n" << a * 2.5 << std::endl;

  std::cout << "0.1 * v =\n" << 0.1 * v << std::endl;

  std::cout << "Doing v *= 2;" << std::endl;

  v *= 2;

  std::cout << "Now v =\n" << v << std::endl;

}

结果

a * 2.5 =

2.5   5

7.5  10

0.1 * v =

0.1

0.2

0.3

Doing v *= 2;

Now v =

2

4

6

4. 表达式模板

    这里简单介绍,在高级主题中会详细解释。在Eigen中,线性运算比如+不会对变量自身做任何操作,会返回一个表达式对象来描述被执行的计算。当整个表达式被评估完(一般是遇到=号),实际的操作才执行。

    这样做主要是为了优化,比如

VectorXf a(50), b(50), c(50), d(50);

...

a = 3*b + 4*c + 5*d;

    Eigen会编译这段代码最终遍历一次即可运算完成。

for(int i = 0; i < 50; ++i)

  a[i] = 3*b[i] + 4*c[i] + 5*d[i];

    因此,我们不必要担心大的线性表达式的运算效率。

5. 转置和共轭

 表示transpose转置

 表示conjugate共轭

 表示adjoint(共轭转置) 伴随矩阵

MatrixXcf a = MatrixXcf::Random(2,2);

cout << "Here is the matrix a\n" << a << endl;

cout << "Here is the matrix a^T\n" << a.transpose() << endl;

cout << "Here is the conjugate of a\n" << a.conjugate() << endl;

cout << "Here is the matrix a^*\n" << a.adjoint() << endl;

输出

Here is the matrix a

 (-0.211,0.68) (-0.605,0.823)

 (0.597,0.566)  (0.536,-0.33)

Here is the matrix a^T

 (-0.211,0.68)  (0.597,0.566)

(-0.605,0.823)  (0.536,-0.33)

Here is the conjugate of a

 (-0.211,-0.68) (-0.605,-0.823)

 (0.597,-0.566)    (0.536,0.33)

Here is the matrix a^*

 (-0.211,-0.68)  (0.597,-0.566)

(-0.605,-0.823)    (0.536,0.33)

    对于实数矩阵,conjugate不执行任何操作,adjoint等价于transpose

    transposeadjoint会简单的返回一个代理对象并不对本省做转置。如果执行 b=a.transpose() a不变,转置结果被赋值给b。如果执行 a=a.transpose() Eigen在转置结束之前结果会开始写入a,所以a的最终结果不一定等于a的转置。

Matrix2i a; a << 1, 2, 3, 4;

cout << "Here is the matrix a:\n" << a << endl;

a = a.transpose(); // !!! do NOT do this !!!

cout << "and the result of the aliasing effect:\n" << a << endl;

 

Here is the matrix a:

1 2

3 4

and the result of the aliasing effect:

1 2

2 4

    这被称为别名问题。在debug模式,当assertions打开的情况加,这种常见陷阱可以被自动检测到。

    对 a=a.transpose() 这种操作,可以执行in-palce转置。类似还有adjointInPlace

MatrixXf a(2,3); a << 1, 2, 3, 4, 5, 6;

cout << "Here is the initial matrix a:\n" << a << endl;

a.transposeInPlace();

cout << "and after being transposed:\n" << a << endl;

 

Here is the initial matrix a:

1 2 3

4 5 6

and after being transposed:

1 4

2 5

3 6

6. 矩阵-矩阵的乘法和矩阵-向量的乘法

    向量也是一种矩阵,实质都是矩阵-矩阵的乘法。

  • 二元运算 *a*b
  • 复合运算 *=a*=b
#include 

#include 

using namespace Eigen;

int main()

{

  Matrix2d mat;

  mat << 1, 2,

         3, 4;

  Vector2d u(-1,1), v(2,0);

  std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;

  std::cout << "Here is mat*u:\n" << mat*u << std::endl;

  std::cout << "Here is u^T*mat:\n" << u.transpose()*mat << std::endl;

  std::cout << "Here is u^T*v:\n" << u.transpose()*v << std::endl;

  std::cout << "Here is u*v^T:\n" << u*v.transpose() << std::endl;

  std::cout << "Let's multiply mat by itself" << std::endl;

  mat = mat*mat;

  std::cout << "Now mat is mat:\n" << mat << std::endl;

}

输出

Here is mat*mat:

 7 10

15 22

Here is mat*u:

1

1

Here is u^T*mat:

2 2

Here is u^T*v:

-2

Here is u*v^T:

-2 -0

 2  0

Let's multiply mat by itself

Now mat is mat:

 7 10

15 22

m=m*m并不会导致别名问题,Eigen在这里做了特殊处理,引入了临时变量。实质将编译为:

tmp = m*m

m = tmp

如果你确定矩阵乘法是安全的(并没有别名问题),你可以使用noalias()函数来避免临时变量 c.noalias() += a*b 

7. 点运算和叉运算

   dot()执行点积,cross()执行叉积,点运算得到1*1的矩阵。当然,点运算也可以用u.adjoint()*v来代替。

#include 

#include 

using namespace Eigen;

using namespace std;

int main()

{

  Vector3d v(1,2,3);

  Vector3d w(0,1,2);

  cout << "Dot product: " << v.dot(w) << endl;

  double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar

  cout << "Dot product via a matrix product: " << dp << endl;

  cout << "Cross product:\n" << v.cross(w) << endl;

}

输出

Dot product: 8

Dot product via a matrix product: 8

Cross product:

 1

-2

 1

注意:点积只对三维vector有效。对于复数,Eigen的点积是第一个变量共轭和第二个变量的线性积。

8. 基础的归约操作

    Eigen提供了而一些归约函数:sum()prod()maxCoeff()minCoeff(),他们对所有元素进行操作。

#include 

#include 

using namespace std;

int main()

{

  Eigen::Matrix2d mat;

  mat << 1, 2,

         3, 4;

  cout << "Here is mat.sum():       " << mat.sum()       << endl;

  cout << "Here is mat.prod():      " << mat.prod()      << endl;

  cout << "Here is mat.mean():      " << mat.mean()      << endl;

  cout << "Here is mat.minCoeff():  " << mat.minCoeff()  << endl;

  cout << "Here is mat.maxCoeff():  " << mat.maxCoeff()  << endl;

  cout << "Here is mat.trace():     " << mat.trace()     << endl;

}

输出

Here is mat.sum():       10

Here is mat.prod():      24

Here is mat.mean():      2.5

Here is mat.minCoeff():  1

Here is mat.maxCoeff():  4

Here is mat.trace():     5

trace表示矩阵的迹,对角元素的和等价于 a.diagonal().sum() 

minCoeffmaxCoeff函数也可以返回结果元素的位置信息。

Matrix3f m = Matrix3f::Random();

  std::ptrdiff_t i, j;

  float minOfM = m.minCoeff(&i,&j);

  cout << "Here is the matrix m:\n" << m << endl;

  cout << "Its minimum coefficient (" << minOfM

       << ") is at position (" << i << "," << j << ")\n\n";

  RowVector4i v = RowVector4i::Random();

  int maxOfV = v.maxCoeff(&i);

  cout << "Here is the vector v: " << v << endl;

  cout << "Its maximum coefficient (" << maxOfV

       << ") is at position " << i << endl;

输出

Here is the matrix m:

  0.68  0.597  -0.33

-0.211  0.823  0.536

 0.566 -0.605 -0.444

Its minimum coefficient (-0.605) is at position (2,1)

 

Here is the vector v:  1  0  3 -3

Its maximum coefficient (3) is at position 2

9. 操作的有效性

    Eigen会检测执行操作的有效性,在编译阶段Eigen会检测它们,错误信息是繁冗的,但错误信息会大写字母突出,比如:

Matrix3f m;

Vector4f v;

v = m*v;      // Compile-time error: YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES

当然动态尺寸的错误要在运行时发现,如果在debug模式,assertions会触发后,程序将崩溃。
 

MatrixXf m(3,3);

VectorXf v(4);

v = m * v; // Run-time assertion failure here: "invalid matrix product"

 

你可能感兴趣的:(Eigen)