- PCL 点云视窗类CloudViewer
LeonDL168
PCL算法计算机视觉人工智能视觉检测图像处理
点云视窗类CloudViewer是简单显示点云的可视化工具类,可以让用户用尽可能少的代码查看点云。注意:点云视窗类不能应用于多线程应用程序中。简单点云可视化如果用户想用几行代码可视化程序中所对应的地物,可以使用下面的代码:#include//...voidfoo(){pcl::PointCloud::Ptrcloud;//...为cloud添加对应的场景pcl::visualization::Cl
- PCL 怎样可视化深度图像
LeonDL168
PCL计算机视觉人工智能视觉检测图像处理算法
本小节讲解如何可视化深度图像的两种方法,在3D视窗中以点云形式进行可视化(深度图像来源于点云),另一种是,将深度值映射为颜色,从而以彩色图像方式可视化深度图像。代码首先,在PCL(PointCloudLearning)中国协助发行的书提供光盘的第7章例2文件夹中,打开名为range_image_visualization.cpp的代码文件,同文件夹下可以找到相关的测试点云文件room_scan1.
- Open3D 实现CSF布料模拟算法
今夕是何年,
单目+双目Open3d计算机视觉
目录一、算法原理二,详细过程三,环境安装四,代码实现五,结果展示6,在cloudcompare中的实现一、算法原理1、流程概述1)利用点云·滤波算法或者点云处理软件滤除异常点;2)将激光雷达点云倒置;3)设置模拟布料,设置布料网格分辨率GR,确定模拟粒子数。布料的位置设置在点云最高点以上;4)将布料模拟点和雷达点投影到水平面,为每个布料模拟点找到最相邻的激光点的高度值,将高度值设置为IHV;5)布
- Livox_Mid360+IMU仿真搭建
夜雨拾年
无人机
前言本文是对在gazebo里搭建一个livoxmid360+惯导仿真平台测试FAST-LIO2的实现,此博文中存在部分需要修改代码的地方,因此在本文中做出更详细的说明。资源包安装注:由于livox点云的格式是CustomMsg,而rviz中主要使用PointCloud和PointCloud2,转换不太方便,因此不使用官方提供的软件包,使用他人修改后的软件包。但此软件包开发时间较早,缺少mid360
- X Error of failed request: BadWindow (invalid Window parameter)
自动驾驶实战(AIFighting)
环境配置
加载显示点云时出现error.XErroroffailedrequest:BadWindow(invalidWindowparameter)Majoropcodeoffailedrequest:10(X_UnmapWindow)Resourceidinfailedrequest:0x1a00001Serialnumberoffailedrequest:204Currentserialnumberi
- 点云数据集可视化
业余小程序猿
python点云数据可视化
ModelNet40数据集可视化:importopen3daso3dimportnumpyasnpfromplyfileimportPlyDatafromPILimportImage#读取PLY文件内容defread_ply_file(file_path):try:ply_data=PlyData.read(file_path)print("PLY文件内容成功读取")returnply_datae
- Python | 获取PCD点云数据强度等信息
拟墨画扇_
Pythonpython开发语言
最近工作需要,需要获取PCD点云数据的强度等信息,给出open3d和pypcd两种方法获取强度信息。读取的PCD数据头格式如下:VERSION0.7FIELDSxyzintensitylaseridtimeoffsetyawangleSIZE4441284TYPEFFFUUFFCOUNT1111111WIDTH230400HEIGHT1VIEWPOINT0001000POINTS230400DAT
- 论文笔记—NDT-Transformer: Large-Scale 3D Point Cloud Localization using the Normal Distribution Transfor
入门打工人
笔记slam定位算法
论文笔记—NDT-Transformer:Large-Scale3DPointCloudLocalizationusingtheNormalDistributionTransformRepresentation文章摘要~~~~~~~在GPS挑战的环境中,自动驾驶对基于3D点云的地点识别有很高的要求,并且是基于激光雷达的SLAM系统的重要组成部分(即闭环检测)。本文提出了一种名为NDT-Transf
- CloudCompare操作(某一指定要素按照PointSourceID分类)
喵喵不爱吃鱼
工具使用
CloudCompare操作(指定强度值点云按照PointSourceID分类)以实标线为例:强度值31、首先将点云按照Intensity显示Properties->Active:IntensityCurrent:Blue->Green…2、截取实标线菜单栏:Edit->Scalarfields->FilterByValue:3-43、截取的实标线点云按照PointSourceID显示,再使用Po
- 探索POSTECH-CVLab的Point Transformer: 重塑3D点云处理的新篇章
尤琦珺Bess
探索POSTECH-CVLab的PointTransformer:重塑3D点云处理的新篇章在计算机视觉和深度学习领域中,3D点云处理是一个至关重要的环节,因为它能够帮助我们理解复杂环境中的三维结构。POSTECH-CVLab开源的PointTransformer项目,为这一领域的研究与应用开辟了新的道路。本文将深入探讨该项目的技术细节、应用场景及其独特优势,引导更多用户了解并使用PointTran
- 『点云处理任务 』用PCL库 还是 深度学习模型?
爱钓鱼的歪猴
点云深度学习人工智能pcl库
深度学习和PCL库都可以用来做点云处理任务,但是二者侧重点有所不同。1、PCL库(点云库)是一个专门用于点云处理和三维几何分析的开源类库,常用于以下任务:1、点云滤波:用于去除噪音、下采样和平滑等操作,入统计滤波、体素滤波和高斯滤波等。2、特征提取和描述:用于捕获地点云数据的表面特征,入法线估计、曲率计算、局部特征描述子(如FPFH、SHOT)等。3、点云配准:,用于将不同视角或不同时间的点云数据
- 点云从入门到精通技术详解100篇-点云特征学习模型及其在配准中的应用
格图素书
学习
目录前言应用前景国内外研究现状点云特征提取算法研究现状点云配准算法研究现状相关理论基础2.1深度学习2.1.1深度学习概述2.1.2自编码器2.1.3稀疏编码2.1.4受限玻尔兹曼机2.2多层感知机2.2.1多层感知机概述2.2.2感知器与多层感知机2.2.3多层感知机的训练2.3点云配准方法2.3.1无点对应关系的点云配准方法2.3.2基于对应关系的点云配准方法2.4评价指标2.4.1点云配准评
- 如何在3D无序抓取中应用深度学习算法?
道亦无名
人工智能3d深度学习算法
在3D无序抓取中,深度学习算法的应用极大地提升了系统的识别精度和效率。以下是深度学习算法在3D无序抓取中的具体应用方式:一、物体识别图像预处理:首先,通过3D相机获取的点云数据或深度图像需要进行预处理,包括去噪、滤波、分割等步骤,以提高后续处理的准确性。特征提取:利用深度学习算法(如卷积神经网络CNN)对预处理后的图像进行特征提取。这些特征可以是物体的形状、纹理、边缘等,有助于区分不同的物体。分类
- 2022-03-31 跟随王纪琼导师学习收获
湘颖心理讲师心理咨询师
湘颖每日一省D282021年7月上了王纪琼导师的第25期高级心理讲师班,五天三夜的课程+一晚的酒会,听课的时候觉得哪里都讲的很好,学完之后感觉有点云里雾里,回来之后我非常认真的整理了笔记,整理了两大笔记本。整理的过程慢慢有点思路。2021年十一期间我又参加了第26期高级讲师班的复训,这次才对课程内容有了进一步的认识,才明白导师讲的大部分内容。了解到导师除了心理讲师课程之外,还有家庭系统教育。因为当
- 9 自研rgbd相机基于rk3566之qt框架开发rgbd融合线程
三十度角阳光的问候
qtqt-creator双目rgbd点云融合tof瑞芯微
qt框架开发rgbd融合线程rgbd线程功能及处理流程1rgbd线程分为如下几个功能:2rgbd线程的处理流程如下:rgbd线程qt程序详解1接收界面启动停止信号。2qt线程运行点云与颜色帧对齐rgbd线程程序示例1线程头文件:pthread_tof.h2线程源文件:pthread_tof.cpprgbd线程功能及处理流程1rgbd线程分为如下几个功能:1创建与声明rgbtof的共享内存。2同时接
- 9 自研rgbd相机基于rk3566之qt框架开发主线程与opengl_widget点云显示
三十度角阳光的问候
qt管线渲染着色器rk3566/rk3588qt-creatorgpuopengl
qt框架开发opengl_widget点云显示mainwindow主线程代码详解1主线程功能:2主线程代码示例:Qopenglwidget点云显示类代码详解1qtopenglwidget框架介绍:2qtopenglwidget渲染流程:3qtopenglwidget顶点与片段着色器配置示例:4qtopenglwidget主线程更新点云函数:5qtopenglwidget类头文件示例:6qtopen
- 【小白深度教程 1.5】手把手教你用立体匹配进行双目深度估计,以及 3D 点云生成(含 Python 代码解读)
小寒学姐学AI
从零开始的深度补全和深度估计3dpython人工智能计算机视觉自动驾驶深度学习笔记
【小白深度教程1.5】手把手教你用立体匹配进行双目深度估计,以及3D点云生成(含Python代码解读)1.立体匹配的原理2.块匹配算法(BlockMatchingAlgorithm)2.1代码中的立体匹配过程概述2.2代码原理及公式2.2.1.窗口匹配和代价函数(SAD)2.2.2.匹配过程2.2.3.视差图生成2.3代码的整体算法流程2.4性能与优化3.加载双目图像计算视差4.读取相机参数并计算
- 【Lidar】基于Python的点云数据下采样+体素显示
RS迷途小书童
激光雷达点云数据python开发语言激光点云数据点云数据处理
1Open3D库介绍Open3D是一个开源的3D数据处理库,发布于2015年,目前已经更新到0.17.0版本。它基于MIT协议开源许可,使用C++11实现,并经过高度优化,还通过PythonPybinding提供了前端PythonAPI。Open3D为开发者提供了一组精心选择的数据结构和算法,内部实现高度优化并设置为并行化。它处理3D数据的各种应用,包括点云、网格、体积计算、可视化、深度学习、测量
- 第二章可通行栅格建立(PCA方法)
喜欢躺着玩
点云处理与导航3dc++
系列文章目录这一篇主要讲怎么通过PCA建立栅格可通行栅格,这部分其实有非常多的方法,这也只是当时前期使用的一个简单demo文章目录系列文章目录前言一、栅格地图二、RTK定位1.更新位置2.将点云读入到栅格地图中3.对每个栅格进行PCA判断总结前言提示:这里可以添加本文要记录的大概内容:对于做工程来说,一般地面分割使用PCA,生长算法以及RANSAC拟合平面较多,但是ransac的波动较为敏感,生长
- Ego-planner:三维建图 grid_map.cpp解析
dueen1123
算法无人机
ego避障里面比较重要的功能是对环境进行栅格地图进行避障其实是通过深度图像或者点云数据来进行转换填充的,(没错,ego也可以利用点云来建图,也就是无需d435i进行输入,可以替换为激光雷达)下面我们分别对这两个方式的建图方法进行解析首先我们需要明确几个十分重要的变量:buffer_size:三维栅格地图的体积,是地图尺寸/分辨率获得的md_.occupancy_buffer_:初始的栅格地图占据状
- DETR3D
zzzzz忠杰
笔记3d自动驾驶计算机视觉
引言从视觉信息中检测3D对象是低成本自动驾驶系统的长期挑战。虽然使用LiDAR等模式收集的点云中的对象检测受益于有关可见对象的3D结构的信息,但基于相机的设置更加不适定,因为我们必须仅根据RGB中包含的2D信息生成3D边界框预测图片。现有方法[1,2]通常完全从2D计算构建检测管道。也就是说,他们使用为2D任务设计的对象检测管道(例如,CenterNet[1]、FCOS[3])来预测3D信息,如对
- NeRF学习——NeRF初步认识
PLUS_WAVE
CVcvpython计算机视觉NeRFAI机器学习神经网络
NeRFNeRF,全名为NeuralRadianceFields,是一种基于深度学习的三维场景隐式表示和渲染方法1NeRF的基本概念1.1辐射场表示场景NeRF的核心思想是通过神经网络训练出来的辐射场对场景进行隐式表示。这种表示方式与传统的使用体素、网格或点云的显式表示不同,NeRF将整个场景看作一个连续的函数,即RadianceFieldsF(x,d)=(σ,c)F(\bfx,d)=(\sigm
- SLAM中常用的库
wq_151
人工智能SLAM计算机视觉人工智能机器学习slam
SLAM中常用的库关于库关于库Pangolin是一个用于OpenGL显示/交互以及视频输入的一个轻量级、快速开发库,下面是Pangolin的Github网址:githubEigen是一个高层次的C++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。pagenanoflann是一个c++11标准库,用于构建具有不同拓扑(R2,R3(点云),SO(2)和SO(3)(2D和3D旋转组))的
- Open3D mesh 拉普拉斯laplacian滤波
白葵新
3d算法python计算机视觉人工智能
目录一、概述1.1原理1.2实现步骤1.3应用场景二、代码实现2.1关键函数参数详解返回值2.2完整代码三、实现效果3.1加入噪点的mesh3.2迭代10次3.3迭代100次Open3D点云算法汇总及实战案例汇总的目录地址:Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客一、概述拉普拉斯滤波(LaplacianSmoothing)是一种常用的网格平滑技术,通过对网格顶点的位置进
- Windows下快速安装Open3D-0.18.0(python版本)详细教程
白葵新
python计算机视觉算法图像处理windows3d
目录一、Open3D简介1.1主要用途1.2应用领域二、安装Open3D2.1激活环境2.2安装open3d2.3测试安装是否成功三、测试代码3.1代码3.2显示效果Open3D专栏算法目录Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客一、Open3D简介Open3D是一个强大的开源库,专门用于处理和可视化3D数据,如点云、网格和RGB-D图像。它提供了丰富的功能和工具,广泛
- Open3D 点云配准-Ransac算法(粗配准)
白葵新
算法人工智能python计算机视觉图像处理3d
目录一、概述1.1简介1.2RANSAC在点云粗配准中的应用步骤二、代码实现2.1关键函数2.2完整代码2.3代码解析2.3.1计算FPFH1.法线估计2.计算FPFH特征2.3.2全局配准1.函数:execute_global_registration2.距离阈值3.registration_ransac_based_on_feature_matching函数三、实现效果3.1原始点云3.2配准
- 户外运动第一天
跟我回火星
拖延症后期的我,春末的时候就计划要开始运动了,明日复明日,今天趁着太阳刚下山,一鼓作气换了鞋子,就出去了。拍了很多照片,开头放几张觉得比较好看的左边去就是中学水库半晚6点半,西边的天空有一点云彩夏日粉红竟然没有拍出来,可能是颜色太淡了路标牌躺在大树的怀里,可能它自己也没有想到这辈子能躺别人怀里被野猪光临过的玉米地,别人家的玉米棒棒都能吃了,江女士种的玉米,玉米须须都还没长出来↑↑躲在山里的别墅,一
- 2019-03-04
许嘉树木
看点云和绿量文献给许愿妈妈寄化妆品运动写作,建立打卡和一句话寻找灵感与爸爸妈妈沟通清楚结婚事情买小冰箱退款
- 语义补全学习笔记
AI算法网奇
深度学习基础人工智能
自动驾驶VoxFormerVoxFromer仅通过2D图像,不依赖点云数据,能预测完整的3D几何形状和语义信息GitHub-NVlabs/VoxFormer:OfficialPyTorchimplementationofVoxFormer[CVPR2023Highlight]
- 深度补全学习笔记
AI算法网奇
深度学习基础深度学习人工智能机器学习
目录自动驾驶深度补全Symphonies报错'FieldInfo'objecthasnoattribute'required'通用深度补全rgb生成点云自动驾驶深度补全Symphonieshttps://github.com/hustvl/Symphonies?tab=readme-ov-file安装mmcv和mmdet安装MMCV和MMDET_mmdet.core-CSDN博客报错'FieldI
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文