- 统计学习笔记九----EM算法
爱科研的徐博士
【算法】统计学习方法EM算法统计学算法
前言EM算法是一种迭代算法,1977年由Dempster等人总结提出,用于含有隐变量(hiddenvariable)的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望(expection);M步,求极大值(maximization),所以这一算法称为期望极大算法(exceptionmaximizationalgorithm),简称EM算法。极大似然估计极大
- R语言:多水平统计模型
小易学统计
转自个人微信公粽号【易学统计】的统计学习笔记:R语言:多水平统计模型01解决何种问题同样是九年义务教育,凭什么别人那么优秀?显然这跟每个人,不同班级,不同学校有关系,究竟是什么样的关系呢?在临床研究中,研究成都居民和上海居民的糖尿病患病的影响因素。显然成都市民饮食偏向咸辣,上海市民饮食偏清淡,这对糖尿病的危险因素是有影响的。除此以外还有上篇文章中提到的三个案例,如多次测量结局以比较两种治疗方式的治
- 概率与数理统计学习笔记2-估计
悠悠zzz
点估计:目的:总体分布已知情况下,借助样本来估计总体的未知参数方法:矩估计法:样本一阶矩为总体的一阶矩(即期望),样本二阶中心矩为总体的二阶中心矩(即方差)最大似然估计法:利用已知样本结果信息,反推最有可能得到样本结果出现的模型参数值估计量的评选标准:无偏性,有效性,相合性区间估计:估计出参数范围,同时给出此区间包含真实值的可信程度置信区间:反复多次抽样,样本值确定的统计量区间置信水平:1-a指置
- 概率与数理统计学习笔记1-随机变量
悠悠zzz
概率与数理统计学了好几遍都学不清楚,今天再刷一遍,整理出第一篇学习笔记。随机变量:随机事件的数量表现,两种类型,离散型随机变量和连续型随机变量离散型随机变量:变量取值有限个分布律:每个取值的概率0-1分布:取值只有0和1伯努利试验,二项分布:伯努利试验是试验结果只有正反两种结果的试验;二项分布是n重伯努利试验;二项分布当n=1结果就是0-1分布泊松分布:近似二项分布概率的计算方式,当n>20,p=
- 概率与数理统计学习笔记2-假设检验
悠悠zzz
假设检验的目的:判断样本与样本,样本与总体的差异是由抽样误差造成还是本质差别造成;或是为了判断推断总体特征作出的假设是否应该接受名词解释显著性水平:原假设为真却被拒绝的概率(简称弃真概率)提出相互对立的两个假设。原假设H0通常是要被反驳的假设,备择假设H1是认为相对正确的假设检验统计量:统计量差值做过标准化之后的值(下文用差异标准值代替)拒绝域:检验结果落入此区域会被拒绝假设检验的验证方式有2种:
- R语言|广义相加模型(GAM)
小易学统计
转自个人微信公粽号【易学统计】的统计学习笔记:R软件:广义相加模型(GAM)01解决何种问题前面一期和大家分享如何运用样条回归处理遇到的非线性问题,但这适合处理单个因变量Y对应一个自变量X的问题,而现实情况是,我们常常要处理多个自变量和一个因变量之间的关系,除此以外,虽然通过做散点图能发现非线性关系,但很难归属它的形式,广义线性模型中的多项式回归,由于其不好解释的系数,降低了模型实用性。因此本章分
- R语言|两因素重复测量方差分析
小易学统计
转自个人微信公粽号【易学统计】的统计学习笔记:R语言:两因素重复测量方差分析01研究问题有研究将14名肥胖者随机分成2组,1组用A种减肥药,另一组用B种减肥药,坚持服药6个月,期间禁止使用任何影响体重的药物,其他情况跟之前保持一致。分别测得0周、8周、16周和24周的体重资料。问题:1.新型减肥药A和现有减肥药B的效果是否不同?2.肥胖者在服药后不同时间体重的变化情况。3.控制因素和时间是否有交互
- 统计学习笔记——统计学习三要素
Fiona_ll
读书笔记统计学习方法统计学习:机器学习读书笔记预测算法机器学习统计学习方法
参考书:《统计学习方法》——李航统计学习的三要素为:模型、策略、算法。写在前面的话:以下以监督学习为基础来进行论述。监督学习的假设:在监督学习当中,我们假设输入和输出的随机变量和服从联合概率分布,训练数据和测试数据被看做是依联合概率分布独立同分布产生的。一、模型在监督学习当中,我们的目的是学习一个由输入到输出的映射,这个映射就是模型。一般来说,模型有两种形式,一种是概率模型(条件概率分布),另一种
- 向前logistic回归与向后筛选出一样的变量_生存分析之Cox回归
weixin_40001395
转自个人微信公众号【Memo_Cleon】的统计学习笔记:生存分析之Cox回归。随访资料的生存分析是一个很大的题目。从分析的因素上看,有单因素分析和多因素分析。正如“连续资料的单因素分析常用t检验、方差分析,对应的多因素分析是多重线性回归”、“分类资料的单因素分析方法卡方分析,对应的多因素分析有logistic回归”一样,生存分析的常用单因素(或少数因素)的分析有LifeTables法、Kapla
- 两个自变量和一个因变量spss_SPSS学习笔记:因变量二分类资料的logistic回归分析...
weixin_39524741
两个自变量和一个因变量spss
转自个人微信公众号【Memo_Cleon】的统计学习笔记两个概念:RR和OR二分类资料的logistic回归SPSS操作示例几个需要注意的问题:样本量、哑变量、模型拟合效果和拟合优度检验、多重共线【1】两个概念RR(RelativeRisk):相对危险度,也称危险比(RiskRatio)或率比(RateRatio),在前瞻性研究中用以表示暴露与疾病发生的关联强度,说明暴露组发病危险是非暴露组发病危
- 概率论与数理统计学习笔记——day4
悠哉的zju
概率论
目录一.条件概率的定义二、乘法定理三、全概率公式四、贝叶斯(Bayes)公式一.条件概率的定义2.条件概率的基本性质3.条件概率的其它性质:二、乘法定理三、全概率公式四、贝叶斯(Bayes)公式
- 概率论与数理统计学习笔记之——概率论的基本概念
前丨尘忆·梦
概率论
概率论的基本概念1、随机试验随机试验具有以下特点:可以在相同的条件下重复地进行;每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;进行一次试验之前不能确定哪一个结果会出现。2、样本空间、随机事件2.1、样本空间我们将随机试验E的所有可能结果组成的集合成为E的样本空间,记为S。样本空间的元素,即E的每个结果,称为样本点。2.2、随机事件一般,我们称试验E的样本空间S的子集为E的随机事件,
- 概率论与数理统计学习笔记——概率的数学定义,乘法公式,条件概率,全概率,贝叶斯公式,事件的独立性
HiSi_
概率论与数理统计概率论
概率的数学定义:我们能够理解的概率的定义是:某个事件发生的可能性的大小。但是这不是数学定义,其实概率的定义不好正面描述,我的老师在上课的时候也只给出了其的特点,相当于侧面描述:1.任何一个事件发生的概率一定大于等于0,即P(A)>=0.2.必然事件发生的概率为1,P(Ω)=1.3.对于两两互不相容的可列无穷多个事件A1,A2,……,An有P(A1UA2UA3UA4…UAn)=P(A1)+P(A2)
- 概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式
野指针小李
数学概率论全概率公式贝叶斯公式
目录1.背景2.全概率公式3.贝叶斯公式1.背景下图是本文的背景内容,小B休闲时间有80%的概率玩手机游戏,有20%的概率玩电脑游戏。这两个游戏都有抽卡环节,其中手游抽到金卡的概率为5%,端游抽到金卡的概率为15%。已知小B这天抽到了金卡,那么请问他是在手机上抽到的还是在电脑上抽到的?2.全概率公式上述问题中,我们先考虑小B抽到金卡这件事的概率,设玩电脑的概率为P(c)P(c)P(c),玩手机的概
- R语言|Cox模型校准度曲线绘制
小易学统计
转自个人微信公粽号【易学统计】的统计学习笔记:R语言实现Cox模型校准度曲线绘制研究背景这是关于cox模型的第二篇文章,上一篇文章分享了运用Lasso回归如何筛选变量,将筛选后的变量绘制Nomogram图,本章分享构建模型后,如何绘制校准曲线。cox模型的验证不同于Logistic回归,cox的结局包括时间和状态,所以对于某个患者来说,他的结果是否准确,就要看模型在他随访的时间点,所预测的结局是否
- R语言|基于Cox模型pec包深度验证
小易学统计
转自个人微信公粽号【易学统计】的统计学习笔记:R语言pec包深度验证Cox模型研究背景在cox回归中,如何利用已经构建好的预测模型预测单个患者的生存概率呢?R中的pec包中predictSurvProb()函数可以利用cph()拟合的模型计算验证集中患者在不同时间节点的生存概率。其次该包还能在验证集中计算不同时间点C-index指数,绘制成图,比较验证集在不同模型中的C-index,通过交叉验证评
- R语言:广义估计方程(GEE)
小易学统计
转自个人微信公粽号【易学统计】的统计学习笔记:R语言:广义估计方程(GEE)01解决何种问题在临床研究中,经常会比较两种治疗方式对患者结局的影响,并且多次测量结局。例如为了研究两种降血糖药对血糖的控制结果是否存在差异,研究者会在两组人群服药后不同的时间点记录血糖值,然后评价降血糖结果。为评价抗癫痫药物的作用,观察并记录两组不同用药的人群在8周内,每2周发病的次数,分析该药物是否有抑制癫痫发作的作用
- 【李航统计学习笔记】第五章:决策树
西风瘦马1912
李航统计学习笔记机器学习决策树
5.1树的定义树的最顶端叫根节点,所有样本的预测都是从根节点开始的每一个圆形节点表示判断,每个节点只对样本的某个属性进行判断。矩形节点是标记节点,走到矩形节点表示判断结束,将矩形节点中的标签作为对应的预测结果。怎么构建决策树?如果苹果的样本还有一个特征叫形状,我们为形状建立球形和立方型两个分支,显然所有的样本都会到球形分支里面去,这样的判断没有进行有效地划分。此外根据某个特征X,10个苹果中9个会
- 统计学习笔记:方差分析
Bernard.Dong
学习python概率论
方差分析(ANOVA)又称F检验。方差分析是判定方差在组间和组内是否(明显)具有区别的一种方法。如果组内差异相对于组间差异较小,则可以推断出组与组之间是有明显差异的。从形式上看,方差分析与t检验或z检验区别不大,都是检验均值是否相等,但方差分析可以同时比较多个均值。广义的方差分析分为:单因素方差分析(1-wayANOVA)双因素方差分析(2-wayANOVA)与多因素方差分析(N-wayANOVA
- 统计学习笔记:假设检验基本概念及U检验、T检验、F检验
Bernard.Dong
学习
文章目录1.假设检验原假设和备择假设第一类错误和第二类错误p值2.U检验单样本U检验双样本U检验3.T检验单样本T检验双样本T检验(σ12=σ22=σ2\sigma_1^2=\sigma_2^2=\sigma^2σ12=σ22=σ2未知时)3.F检验单样本正态总体方差检验双样本正态总体方差检验(方差齐性检验)1.假设检验这里只讨论双侧参数假设检验,不包含单侧及非参的假设检验。原假设和备择假设在参数
- 【李航统计学习笔记】第一章:统计学习及监督学习概论
西风瘦马1912
李航统计学习笔记机器学习人工智能极大似然估计
1.1导论统计学习监督学习的实现步骤:得到一个有限的训练数据集合确定模型的假设空间,也就是所有的备选模型确定模型选择的准则,即学习的策略实现求解最优模型的算法通过学习方法选择最优模型利用学习的最优模型对新数据进行预测或分析监督学习训练集:T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T=\left\{\left(x_{1},y_{1}\right),\left(x_{2},y_{2}
- 多元线性回归分析spss结果解读_多重线性回归分析SPSS操作与解读
weixin_39611340
转自个人微信公众号【Memo_Cleon】的统计学习笔记:多元线性回归。这次笔记的内容是多元线性回归的SPSS操作及解读。严格来讲,这种一个因变量多个自变量的线性回归叫多变量线性回归或者多因素线性回归更合适一些。多元或者多变量往往指的是多个因变量。在线性回归中,残差是一个非常重要的概念,它是估计值与观测值之差,表示因变量中除了分析的自变量外其他所有未进入模型的因素引起的变异,即不能由分析自变量估计
- 概率论与数理统计学习笔记(5)——极大似然估计
野指针小李
数学机器学习深度学习概率论人工智能机器学习深度学习
在机器学习与深度学习中,特别是"模型已定,参数未知"的情况下,普遍使用最大似然估计法学习参数。为了后面学习中能够找得到地方复习这些概率论知识,所以这里整理了极大似然估计的笔记,所有参考内容放在最后。对了宝贝儿们,卑微小李的公众号【野指针小李】已开通,期待与你一起探讨学术哟~摸摸大!目录1似然与概率2似然函数3极大似然估计4参考1似然与概率似然(likelihood)与概率(probability)
- 统计学习笔记 - KNN原理、python实现
中杯冰美式
统计学习python机器学习统计学深度学习数据结构
1.KNN实现我的理解就是,找到最接近的K个邻居,根据邻居的类别,确定自己的类别。怎么确定呢?K个邻居进行投票。包括:输入一个新的实例在已知的训练数据集中计算该新的实例与训练数据集中数据点之间的距离按照距离进行排序选择距离最短的也就是最相似的前K个邻居这K个邻居根据自己的类别进行投票,票数最多的类别就是该新的实例的类别。2关于可哈希(hashable)简要的说可哈希的数据类型,即不可变的数据结构(
- 处理效应模型stata实例_重复测量数据分析系列:再谈多层混合效应模型(基于Stata)...
律姐有范儿
处理效应模型stata实例
转自个人微信公众号【Memo_Cleon】的统计学习笔记:重复测量数据分析系列:再谈多层混合效应模型(基于Stata)。感觉从来没有一个模型有这么多的名字。多层混合效应模型(MultilevelMixed-EffectLinearModel);多水平模型(MultilevelModel),分层线性模型(HierarchicalLinearModel);混合效应模型(MixedEffectModel
- 【李航统计学习笔记】第四章:朴素贝叶斯
西风瘦马1912
李航统计学习笔记学习算法机器学习
(尾巴:补充一些例子)4.1直观理解条件概率例子4.1:女朋友和妈妈掉河里了,路人拿出来3颗豆,两颗红豆1颗绿豆。如果我抽中红豆救女朋友,抽中绿豆救妈妈。我和路人各自抽了一颗,路人发现自己抽中的是绿豆,他想用剩下的那颗和我换,我换不换?换不换豆女朋友活下去的概率一样吗?直觉来讲:换不换豆我抽中红豆的概率应该都是1/31/31/3。这时路人跟我说他的是绿豆,排除一颗,我抽中红豆的概率是1/21/21
- 概率论与数理统计学习笔记(6)——分布律,分布函数,密度函数
野指针小李
数学概率论分布律分布函数密度函数
对了宝贝儿们,卑微小李的公众号【野指针小李】已开通,期待与你一起探讨学术哟~摸摸大!目录1离散型随机变量1.1(0-1)分布1.2伯努利试验1.3二项分布1.4几何分布1.5泊松分布2.连续型随机变量2.1分布函数与概率密度函数2.2均匀分布2.3指数分布2.4正态分布2.4.1标准正态分布2.4.2一般正态分布References1离散型随机变量离散型随机变量指的是取到的值时有限个或者可列无限多
- 概率论与数理统计学习笔记——第7讲——连续型随机变量(2.5.4指数分布及其与泊松分布的关系)
预见未来to50
数学(高数线代概率论)Foundation
1.指数分布的定义2.指数分布的分布函数3.指数分布的重要性质——无记忆性4.指数分布的应用示例——元器件的寿命与其已使用无关(指数分布又被称为永远年轻分布)5.泊松分布与指数分布的关系6.指数分布的应用示例
- 统计学习笔记-第7章 支持向量机
madao10086+
统计学习方法笔记机器学习算法支持向量机
第七章支持向量机(SupportVectorMachines,SVM)前言支持向量机这部分的知识点断断续续看了一周,看的头疼,至今仍有许多疑惑。在理解透彻之前先记下部分总结,也包括一些不懂的点,整理一下看的知识点,等有时间再回过头来仔细看看。支持向量机(SupportVectorMachine,SVM)的大名想必大家早有耳闻,其功能强大且用途广泛,既可以进行线性分类也可以进行非线性分类,甚至还可以
- spss正态性检验_R笔记:正态分布的检验
weixin_39622521
spss正态性检验错误:程序包r不存在
转自个人微信公众号【Memo_Cleon】的统计学习笔记:R笔记:正态分布的检验。正态分布的检验方法有很多,我们在>做过介绍,本文介绍的R软件的检验。每种方法在R中都有很多程序包可以实现。示例采用>的数据,是安慰剂组和3个剂量组药物的降脂疗效。从SPSS中载入数据,采用函数spss.get{Hmisc}。spss.get(file,lowernames=FALSE,datevars=NULL,us
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc