Nash Equilibrium is an important concept in game theory.
Rikka and Yuta are playing a simple matrix game. At the beginning of the game, Rikka shows an n×m integer matrix A. And then Yuta needs to choose an integer in [1,n], Rikka needs to choose an integer in [1,m]. Let i be Yuta's number and j be Rikka's number, the final score of the game is Ai,j.
In the remaining part of this statement, we use (i,j) to denote the strategy of Yuta and Rikka.
For example, when n=m=3 and matrix A is
If the strategy is (1,2), the score will be 2; if the strategy is (2,2), the score will be 4.
A pure strategy Nash equilibrium of this game is a strategy (x,y which satisfies neither Rikka nor Yuta can make the score higher by changing his(her) strategy unilaterally. Formally, (x,y is a Nash equilibrium if and only if:
In the previous example, there are two pure strategy Nash equilibriums: (3,1) and (2,2).
To make the game more interesting, Rikka wants to construct a matrix A for this game which satisfies the following conditions:
1. Each integer in [1,nm] occurs exactly once in A.
2. The game has at most one pure strategy Nash equilibriums.
Now, Rikka wants you to count the number of matrixes with size n×m
The first line of each testcase contains three numbers n,m and K.
The input guarantees that there are at most 3 testcases with max(n,m)>50.OutputFor each testcase, output a single line with a single number: the answer modulo K.Sample Input
2 3 3 100 5 5 2333Sample Output
64 1170
OJ-ID:
hdu-6415
author:
Caution_X
date of submission:
20191026
tags:
dp
description modelling:
给定N×M的矩阵A,若该矩阵满足{A(x,y)≥A(i,y) ?i∈[1,n],A(x,y)≥A(x,j) ?j∈[1,m]}且该矩阵元素分别是1~N*M,则称这是矩阵A的一个方案。输入N,M,K,输出N×M矩阵的方案数模K的值。
major steps to solve it:
从最大的数开始依次选择一个位置来存放,第一个数有N×M种放置方法,后面每一个数都必须保证和之前放过的数同一行或者同一列。
首先第一个数会产生一个新行和一个新列,第二个数会产生一个新行或者一个新列,第三个数同第二个数,第四个数及第四个数之后的所有数都分三种情况讨论:
(1)新加入之后产生了一个新行
(2)新加入之后产生了一个新列
(3)既没有产生新行也没有产生新列
设dp[i][j][k],表示已经产生了i个行,j个列,用掉了k个数
那么则:
(1)dp[i][j][k]+=dp[i][j][k-1]*(i*j-i+1)%MOD,没有产生新行或者新列
(2)dp[i][j][k]+=dp[i-1][j][k-1]*(n-i+1)%MOD,产生了新行
(3)dp[i][j][k]+=dp[i][j-1][k-1]*(m-j+1)%MOD,产生了新列
AC code:
#include#include <string.h> #include using namespace std; typedef long long int LL; LL T, n, m, mod, dp[88][88][2], p; int main() { scanf("%lld", &T); while(T--) { scanf("%lld%lld%lld", &n, &m, &mod); memset(dp, 0, sizeof dp); p = 0; dp[1][1][1] = n * m % mod; for(int i=2;i<=n*m;i++,p^=1) { for(int j=1;j<=n;j++) { for(int k=1;k<=m;k++) { dp[j][k][p] = 0; if(j * k < i) continue; dp[j][k][p] = dp[j][k][p^1] * (j*k-i+1) % mod; dp[j][k][p] = (dp[j][k][p] + dp[j-1][k][p^1] * (n-j+1) * k) % mod; dp[j][k][p] = (dp[j][k][p] + dp[j][k-1][p^1] * (m-k+1) * j) % mod; } } } printf("%lld\n", dp[n][m][p^1]); } return 0; }