视觉slam14讲学习(一)之se3上的定位表示:轨迹显示与轨迹误差

文章目录

    • 1.读出trajectory.txt中的轨迹信息
    • 2. 用pangolin画出轨迹poses
    • 3. 利用Eigen进行欧拉角和四元数的转化
    • 4. 画出两条轨迹,对定位精度进行分析
    • 5.结果显示

1.读出trajectory.txt中的轨迹信息

高翔博士的视觉slam14讲书籍下载资源
如何描述视觉定位的精度?一般会用定位误差来描述,有很多开源工具干这件事情,在这之前,我们先学习如何用Pangolin来画出机器人的定位轨迹。
首先需要读出trajectory.txt中的轨迹信息,其中txt中的轨迹格式是[time,tx,ty,tz,qx,qy,qz,qw]

#include 
#include 
#include 
#include 

// need pangolin for plotting trajectory
#include 

using namespace std;

// path to trajectory file
string trajectory_file = "./trajectory.txt";


// function for plotting trajectory, don't edit this code
// start point is red and end point is blue
void DrawTrajectory(vector>);

int main(int argc, char **argv) {

    vector> poses;//读出的位姿存入该容器类vector中


//读取轨迹文件中的位姿,T(t3,q4)
    //第一种方法,用fstream的getline分行读取stringstream按空格拆分传入数组
   /* ifstream infile;
    infile.open(trajectory_file, ios::in);
    if(!infile.is_open())
    cout<<"open file failture"< arr;
        while(ss >> str){//传入字符
            cout<>d;//按行依次去除数组中的值

        Eigen::Quaterniond q(data[7], data[8], data[5], data[6]);
        Eigen::Vector3d t(data[1], data[2], data[3]);
        Sophus::SE3 SE3(q,t);
        poses.push_back(SE3);

               
    }
   //*/

    // draw trajectory in pangolin
    DrawTrajectory(poses);
    return 0;
}

            

2. 用pangolin画出轨迹poses

//gaoxiang提供的画轨迹的函数
void DrawTrajectory(vector> poses) {
    if (poses.empty()) {
        cerr << "Trajectory is empty!" << endl;
        return;
    }

    // create pangolin window and plot the trajectory
    pangolin::CreateWindowAndBind("Trajectory Viewer", 1024, 768);
    glEnable(GL_DEPTH_TEST);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

    pangolin::OpenGlRenderState s_cam(
            pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),
            pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0)
    );

    pangolin::View &d_cam = pangolin::CreateDisplay()
            .SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f)
            .SetHandler(new pangolin::Handler3D(s_cam));


    while (pangolin::ShouldQuit() == false) {
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        d_cam.Activate(s_cam);
        glClearColor(1.0f, 1.0f, 1.0f, 1.0f);//窗口,rgba

        glLineWidth(2);//线宽
        //cout<<"pose.size()="<

3. 利用Eigen进行欧拉角和四元数的转化

Eigen::AngleAxisd rollAngle(AngleAxisd(roll_ - roll1_,Vector3d::UnitX()));
Eigen::AngleAxisd pitchAngle(AngleAxisd(pitch_ - pitch1_,Vector3d::UnitY()));
Eigen::AngleAxisd yawAngle(AngleAxisd(yaw_ - yaw1_,Vector3d::UnitZ()));
Eigen::Quaterniond q;
q= yawAngle * pitchAngle * rollAngle;
q.normalized();

4. 画出两条轨迹,对定位精度进行分析

对于第i位姿误差定义: e i = ∥ ei=\parallel ei=log(Tqt − 1 ^{-1} 1.Test) υ ^\upsilon υ ∥ \parallel (从4x4的矩阵变成6x1的向量);
总的误差和: R M S E = 1 / n ∑ i = 0 n e i 2 RMSE=\sqrt{1/n\sum_{i=0}^{n}ei^{2}} RMSE=1/ni=0nei2

//author:jiangcheng
#include 
#include 
#include 
#include 

// need pangolin for plotting trajectory
#include 

using namespace std;

// path to trajectory file
string gt_file = "/home/ubuntu/DL/深蓝slam/L4/draw_trajectory/groundtruth.txt";
string est_file = "/home/ubuntu/DL/深蓝slam/L4/draw_trajectory/estimated.txt";

// function for plotting trajectory, don't edit this code
// start point is red and end point is blue
vector> get_pose(string& pose_file);

void DrawTrajectory(vector> >_poses,
                    vector> &est_poses);

void compare_difference(vector> >_poses,
                        vector> &est_poses);

int main(int argc, char **argv) {

    vector> gt_pose=get_pose(gt_file);
    vector> est_pose=get_pose(est_file);//继续往poses全局变量里面传数据

  
   // draw trajectory in pangolin
    //DrawTrajectory(gt_pose,est_pose);//打印两条轨迹


    //计算误差
    compare_difference(gt_pose,est_pose);
    return 0;
}


/****************************************************************************************/
vector> get_pose(string& pose_file){
    vector> poses;//读出的位姿存入该容器类vector中,局部变量
    //*第二种方法,参考点云地图传入,gaoxiang书的第五讲/
   
    ifstream in(pose_file);//创建输入流
   
    if(!in){
        cout<<"open posefile failture!!!"<>d;//按行依次去除数组中的值
        Eigen::Quaterniond q(data[7], data[4], data[5], data[6]);
        Eigen::Vector3d t(data[1], data[2], data[3]);
        Sophus::SE3 SE3(q,t);
        poses.push_back(SE3);
          
    }
    return poses;
}


/*******************************************************************************************/
//计算两个轨迹的误差
void compare_difference(vector> >_poses,
                    vector> &est_poses){
 
    double rmse_square=0;
    double rmse=0;

    for (int i = 0; i <612; i++) {


            auto p1 = gt_poses[i];
            Sophus::SE3 p2 = est_poses[i];
            cout<<"p1.matrix "< m = (p1.matrix().inverse())*p2.matrix();
            
            cout<<"m.matrix"< R = m.topLeftCorner<3,3>();
            Eigen::Matrix t = m.topRightCorner<3,1>();
            Sophus::SE3 SE3_dot(R,t);//构造T12的李群SE3,从4x4的矩阵变成6x1的向量
            cout<<"se3 is "<> >_poses,
                    vector> &est_poses){
    if (gt_poses.empty() || est_poses.empty()) {
        cerr << "Trajectory is empty!" << endl;
        return;
    }

    // create pangolin window and plot the trajectory
    pangolin::CreateWindowAndBind("Trajectory Viewer", 1024, 768);
    glEnable(GL_DEPTH_TEST);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

    pangolin::OpenGlRenderState s_cam(
            pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),
            pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0)
    );

    pangolin::View &d_cam = pangolin::CreateDisplay()
            .SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f)
            .SetHandler(new pangolin::Handler3D(s_cam));


    while (pangolin::ShouldQuit() == false) {
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        d_cam.Activate(s_cam);
        glClearColor(1.0f, 1.0f, 1.0f, 1.0f);//窗口,rgba

        glLineWidth(2);//线宽
        //cout<<"pose.size()="<

5.结果显示

  1. 两条轨迹显示
    视觉slam14讲学习(一)之se3上的定位表示:轨迹显示与轨迹误差_第1张图片
  2. 误差计算显示
    视觉slam14讲学习(一)之se3上的定位表示:轨迹显示与轨迹误差_第2张图片

你可能感兴趣的:(视觉slam学习)