- 最小生成树个数
兔猪猪兔
矩阵算法矩阵树最小生成树计数
今天练习最小生成树时做到这样一个题1150.最小生成树计数-AcWing题库一个很裸的求最小生成树个数的题,搜题解发现矩阵树来求解很好,关于图论的结论一般证明都非常麻烦,而且我觉得会用就好,这里附上大佬的证明,矩阵树定理及其无向图形式证明--洛谷博客,我们只取其中的结论部分首先,定义一些东西对于无向图,定义D(G)为图G的度数矩阵,其中:(deg是度数的意思)定义A(G)为图G的邻接矩阵,其中:t
- AtCoder Beginner Contest 336 G. 16 Integers(图计数 欧拉路径转欧拉回路 矩阵树定理 best定理)
Code92007
知识点总结#图计数#欧拉回路/欧拉路径图计数欧拉路径欧拉回路best定理
题目给16个非负整数,x[i∈(0,1)][j∈(0,1)][k∈(0,1)][l∈(0,1)]求长为n+3的01串的方案数,满足长度为4的ijkl(2*2*2*2,16种情况)串恰为x[i][j][k][l]个答案对998244353取模思路来源https://www.cnblogs.com/tzcwk/p/matrix-tree-best-theroem.html矩阵树定理-OIWiki知识点
- 【学习笔记】[ABC323G] Inversion of Tree
仰望星空的蚂蚁
线性代数学习笔记
前置知识:矩阵树定理,特征多项式省流:板子缝合题。可以复习一下线性代数的基本知识。定义Pu>PvP_u>P_vPu>Pv的边价值为xxx,Pun>n>n就寄了。因为都是板子,所以建议多看一下代码。注意行和列都要进行操作。复杂度O(n3)O(n^3)O(n3)。#include#definelllonglong#definepbpush_back#definefifirst#defineseseco
- 矩阵树定理
_fairyland
图论算法
构造一个拉普拉斯矩阵:对于边(u,v)(u,v)(u,v),矩阵a[u][u]a[u][u]a[u][u]++,a[v][v]a[v][v]a[v][v]++,a[u][v]a[u][v]a[u][v]–,a[v][u]a[v][u]a[v][u]–,去掉最后一行最后一列,求行列式(取模用辗转相除),即图的生成树个数矩阵树求的是:∑T∏e∈Tpe\sum_T\prod_{e\inT}p_e∑T∏e
- 矩阵树定理||高斯消元求行列式
Yjmstr
学习笔记矩阵树定理
参考链接-博客园参考链接-oiwiki定理部分并没有什么原创内容,全是阅读上面两篇文章做的笔记。矩阵树定理KirchhoffKirchhoffKirchhoff矩阵树定理(简称矩阵树定理)解决了一张图的生成树个数计数问题。矩阵树定理有很多形式,以下内容是一些声明。应用矩阵树定理的图允许重边,但是不允许自环。以下内容是照抄oiwiki的无向图情况:设GGG是一个有nnn个顶点的无向图。定义度数矩阵D
- 矩阵树定理复习与简要证明
EasternCountry
基础算法算法
矩阵树定理用处计算无向图的生成树个数。命题&简要证明矩阵树定理:给定一个有n个点的图G的邻接矩阵A和度数矩阵B(就是B[i][i]B[i][i]B[i][i]表示i这个点的出度,其他位置均为0),记S为G的生成树个数。设T为B-A,记T划去第k行和第k列的矩阵为P(1y,则意味着一定不会有p[y]=y,所以y也一定会有一条出边,最终一定会形成一个环。有环非简单环就意味着有一个点至少有两个出边,这个
- NOI2021信息竞赛学习笔记
andyc_03
线性代数图论算法
一.图论1.仙人掌问题(圆方树)2.矩阵树定理3.网络流4.基环树二、数据结构1.线段树2.左偏树3.树链剖分4.主席树5.树套树6.长链剖分7.LCT三、数学1.欧拉函数|(扩展)欧拉定理|欧拉反演2.线性筛3.莫比乌斯反演4.FFT&NTT5.生成函数6.多项式全家桶7.单位根反演8.FWT9.拉格朗日插值10.线性基11.burnside&polya四、字符串1.后缀数组2.后缀自动机3.序
- 【模拟赛】星际联邦 federation (矩阵树定理,线性代数,循环行列式)
DD(XYX)
数学图论C++算法线性代数矩阵树定理行列式
题面题解如果我们把这个www定义为某一种距离的follow可连的边数,那么就很清楚了:对于所有1≤i,j≤n1\leqi,j\leqn1≤i,j≤n,iii向jjj连有wi−j+nmod nw_{i-j+n\modn}wi−j+nmodn条有向边,而每个点向0号点连有1条有向边。求以0为根的内向生成树个数。直接上矩阵树定理,由于最终求余子式,干脆就忽略0号点,那么答案就是det[1+∑w−w1
- 生成树计数 --- Matrix-Tree定理(基尔霍夫矩阵树定理)
Anxdada
定理证明请点这,多看几遍就懂了模板题点这题目大意:*一个有n座城市的组成国家,城市1至n编号,其中一些城市之间可以修建高速公路;*需要有选择的修建一些高速公路,从而组成一个交通网络;*计算有多少种方案,使得任意两座城市之间恰好只有一条路径;模板:#include#include#include#include#include#definelllonglongusingnamespacestd;co
- 【bzoj4031】 HEOI2015小Z的房间 矩阵树定理
qingdaobaibai
线性代数图论
第一次做矩阵树定理的题,其实就是记了个结论也没太看证明,然后学了学怎么用高斯消元求行列式,整数消元还真别扭,要用辗转相除,然后要注意取模的问题,一开始以为hzwer写麻烦了,后来想了想不加外面那句话会有问题,因为取模了。#include#include#include#include#include#include#definemod1000000000usingnamespacestd;intd
- [矩阵树定理][HEOI2015]小Z的房间
romiqi_new
矩阵树定理
传送门矩阵树定理:一张图的基尔霍夫矩阵即为其度数矩阵-邻接矩阵,度数矩阵中D[i][i]D[i][i]D[i][i]为点i的度一张图的生成树个数即为其基尔霍夫矩阵的行列式Code:#include#defineintlonglong#defineN90#definemod1000000000usingnamespacestd;intn,m,f[N][N];inttot,Map[N][N];void
- bzoj4031: [HEOI2015]小Z的房间
OI界第一麻瓜
矩阵树定理
题目大意就是生成树计数问题题解矩阵树定理题表和定理大意CODE:#include#include#include#includeusingnamespacestd;typedeflonglongLL;constLLMOD=1e9;constLLN=105;LLn,m;LLidx[N][N],id=0;charss[N][N];LLd[N][N],a[N][N];LLc[N][N];//度数是否有边
- [BZOJ4031][HEOI2015]小Z的房间(矩阵树定理+高斯消元)
FromATP
BZOJ高斯消元消来消去
======这里放传送门======题解没错这就是个裸题矩阵树定理:定义一个图的基尔霍夫矩阵为:A[i][j]=⎧⎩⎨d[i],−1,i=ji≠j其中d[i]表示点i的度。对于无向图来说,这个矩阵的任何一个n-1阶主子式的行列式的值就是这个图的不同生成树个数。其中n-1阶主子式表示在矩阵中任意去掉标号相同的一行和一列以后剩下的子矩阵但是这题模数实在是太!恶!心!了!!!ATP尝试了N多种方法包括什
- BZOJ4031 [HEOI2015]小Z的房间
dogeding
矩阵树懵逼了半天终于AC
传送门题解:因为持续写题感到恶心又不想显得太颓于是随便存几个板子求生成树方案数?矩阵树定理板子题。这就当我存个板子的地方吧。总之就是对于边(i,j),矩阵a[i][j]值-1,a[i][i]值+1。然后求个行列式即可。代码:#include#include#definemaxn105#definemod1000000000usingnamespacestd;intn,m,d[5]={0,1,0,-
- CF917D Stranger Trees
hanyuweining
题解————线性代数————拉格朗日插值矩阵树定理
传送门非常舒适的一道题趁机学了一发拉格朗日插值2333貌似是WC2018讲的题我们对于在原图中存在的边记为x没出现的边记为1然后矩阵树定理求出行列式对应的x^k的系数就是跟原图有k条重边的方案数显然带多项式进去不好算那么我们拉格朗日插值对于x分别算1-n得到了n个值然后插值回来就可以了拉格朗日求系数我也没有找到好的博客于是找到学长求助结果他们说的我很懵逼【大概是我菜的真实于是自己YY了一个拉格朗日
- [矩阵树定理][prufer序][CF917D]Stranger Trees
ZLTJohn
DP图论杂题计数类问题线性基及其他线性代数相关数论杂知识点
题目描述给定一棵n个点组成的有标号的树T,我们定义两棵有标号的树的相似度为它们共有的边的个数。现在我们想知道,n个点的完全图所有的有标号的生成树中,有多少棵树与T的相似度为0,1,2…n-1,答案对10^9+7取模对于20%的数据,n#include#include#include#include#includeusingnamespacestd;typedeflonglongll;typedef
- [SP104 HIGH]Highways [HEOI2015]小Z的房间——矩阵树定理入门
ylsoi
高斯消元矩阵树定理
矩阵树定理:用于计算无向连通图的生成树个数。计算出整张图的度数矩阵D(即Di,iD_{i,i}Di,i表示i的度数),和邻接矩阵A(即Ai,jA_{i,j}Ai,j表示i和j的连边的数量),然后得到基尔霍夫矩阵(D-A),计算新矩阵的任意n-1阶主子式的绝对值即可。计算行列式的值:行列式的值直接计算复杂度太高,于是我们利用类似于高斯消元的方法将行列式消成一个上三角矩阵,不难得出此时除了主对角线之外
- 生成树计数问题——矩阵树定理及其证明
WerKeyTom_FTD
杂文矩阵树定理
生成树计数问题给一副n个节点的无向图G,求一个包含n-1条边的边集使得边集的边构成一颗树,问这样的边集的数量。矩阵树定理以下我们都不对重边与自环进行讨论。实际上,即使有重边矩阵树定理仍然是正确的。先定义度数矩阵D,是一个n*n的矩阵。Di,i=节点i的度数,对于i不等于j,Di,j=0。再定义邻接矩阵A,也是一个n*n的矩阵。i与j有边相连就有Ai,j=1否则Ai,j=0。最后定义基尔霍夫矩阵C=
- [洛谷P4111][HEOI2015]小Z的房间
weixin_34255793
题目大意:有一个$n\timesm$的房间,一些位置是房间,另一些位置是柱子,相邻两个房间之间有墙,问有多少种方案可以打通一些墙把所有房间连成一棵树,柱子不可以打通题解:矩阵树定理,把房间当点,墙当边,一张图的生成树个数为每个点的度数矩阵减去邻接矩阵的任意一个代数余子式的值。模数是$10^9$,不可以直接高斯消元,可以用辗转相除法来消元卡点:无C++Code:#include#include#in
- [HEOI2015]小Z的房间(矩阵树定理学习笔记)
weixin_34304013
题目描述你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路。现在,你希
- 洛谷 P3317 [SDOI2014]重建(矩阵树定理+数学推导) [bzoj3534]
weixin_34409822
传送门首先,大家应该都能看出来这是矩阵树定理,然后大部分人应该就会把概率直接带进去算,然后就愉快地WA掉了(我当时就是这么想的,幸亏没交)然后就来讲这个题的正解思路。首先我们来看答案应该是怎样的:ans=∑Tree∏(u,v)∈EP(u,v)∏(u,v)∉E(1−P(u,v))然后我们来想一下怎么来构造这个答案:首先,我们直接矩阵树用高斯算出来的结果应该是这个:now=∑Tree∏(u,v)∈EP
- 矩阵树定理及变元矩阵树定理
weixin_30677073
变元矩阵树定理:定义Kirchhoff矩阵\(K\),其中\(K_{ii}\)为所有与\(i\)相连的边的权值和\(K_{ij}\)为连接\(i\)与\(j\)的边权值和的负值那么\(\sum\limits_{tree\inT}\prod\limits_{E\intree}val(E)\),\(T\)为生成树集合,就是生成树的边积的和然后矩阵树定理就是把\(K_{ii}\)定义为\(i\)的度数\
- 【bzoj4031】[HEOI2015]小Z的房间 矩阵树定理模板
愤怒的愣头青
矩阵树定理学习资料
Description你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通
- [BEST定理 矩阵树定理] BZOJ 3659 Which Dreamed It
里阿奴摩西
Matrix-Tree定理图论
BESTtheorem一个证明?注意区分下题目中要求的“欧拉回路”的条数和定理中欧拉回路的条数欧拉回路是个回路所以存在循环同构题中要求起点是1实际上还要乘上1的度数因为从1的任一边出发在题中都算作一种不同方案#include#include#includeusingnamespacestd;typedeflonglongll;constintN=105;constintP=1000003;intn
- 【BZOJ】【P3534】【Sdoi2014】【重建】【题解】【矩阵树定理】
iamzky
OI
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3534dt学了矩阵树定理邻接矩阵中的的权可以不是1,而是其他权值,比如概率这样计算出来的就是所有生成树的概率和,即但是这样不对……生成一颗生成树T的概率应该是接着就是神奇的转换设G要求的矩阵,P是给出的矩阵我们令对G计算n-1阶主子式,即有那么把它乘上tmp答案就这么出来了!!!!当P=1时处
- [矩阵树定理][SDOI2014]重建
romiqi_new
矩阵树定理
BZOJ3534裸的矩阵树就不用说了吧只不过是一个简单的变元矩阵树,把概率放进去就行了Code:#include#definedbdouble#defineeps1e-7usingnamespacestd;inlineintread(){intres=0,f=1;charch=getchar();while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}w
- BZOJ3534: [Sdoi2014]重建【变元矩阵树定理】
XSamsara
BZOJ矩阵树定理
3534:[Sdoi2014]重建变元矩阵树定理邻接矩阵中是可以带权的,wijwijwij表示i,ji,ji,j的边权,eieiei表示边。定义G(i,j)=G(j,i)=wijG(i,j)=G(j,i)=wijG(i,j)=G(j,i)=wij,令G(i,i)=−∑j≠iG(i,j)G(i,i)=−∑_{j≠i}G(i,j)G(i,i)=−∑j̸=iG(i,j)那么n−1n−1n−1阶主子式的值
- 【BZOJ4894】天赋
cz_xuyixuan
【OJ】BZOJ【类型】做题记录
【题目链接】点击打开链接【思路要点】矩阵树定理同样可以计算有向图某个点的外向生成树的个数。具体方法就是认为度数为每个点的入度,删除一号点(树根)所在的行列,然后求行列式。时间复杂度O(N3)O(N3)。【代码】#includeusingnamespacestd;constintMAXN=305;constintP=1e9+7;templatevoidchkmax(T&x,Ty){x=max(x,y
- bzoj 4639 期望 矩阵树定理
SFN1036
矩阵树定理
题意有一个n个点m条边的图,每条边有长度和美丽值。求该图的所有最小生成树中美丽值的和的期望。满足长度相同的边的数量不超过30。n≤10000,m≤200000n\le10000,m\le200000n≤10000,m≤200000分析显然长度不同的边的贡献是独立的。那么我们可以把每一种距离的边拿出来,对每一个连通块分别处理。枚举同一个连通块中的每一条边,用矩阵树定理算出一定包含这条边的最小生成树的
- 【SPOJ】Highways(矩阵树定理)
小蒟蒻yyb
题面Vjudge洛谷题解矩阵树定理模板题无向图的矩阵树定理:对于一条边(u,v),给邻接矩阵上G[u][v],G[v][u]加一对于一条边(u,v),给度数矩阵上D[u][u],D[v][v]加一定义霍尔基夫矩阵C=D−G将基尔霍夫矩阵去除任意一行和任意一列之后,得到一个(n−1)∗(n−1)的行列式C求解这个行列式的值,最后的|det(C)|就是结果#include#include#includ
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement