Keyword : Cauchy–Schwarz inequality Minkowski inequality Young’s inequality Hölder’s inequality
设 f ( x ) f(x) f(x)在区间 [ 0 , 1 ] [0,1] [0,1]上连续,且 1 ≤ f ( x ) ≤ 3 1\leq f(x)\leq 3 1≤f(x)≤3 .证明:
1 ≤ ∫ 0 1 f ( x ) d x ∫ 0 1 1 f ( x ) d x ≤ 4 3 1\leq\int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{1}{f(x)}\mathrm{d}x\leq\frac{4}{3} 1≤∫01f(x)dx∫01f(x)1dx≤34
Proof: According to Cauchy-Schwarz inequality
∫ 0 1 f ( x ) d x ∫ 0 1 1 f ( x ) d x ≥ ( ∫ 0 1 d x ) 2 = 1 \int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{1}{f(x)}\mathrm{d}x\geq\big(\int_{0}^{1}\mathrm{d}x\big)^{2}=1 ∫01f(x)dx∫01f(x)1dx≥(∫01dx)2=1
because 1 ≤ f ( x ) ≤ 3 1\leq f(x)\leq3 1≤f(x)≤3, then
( f ( x ) − 1 ) ( f ( x ) − 3 ) f ( x ) ≤ 0 \frac{\big(f(x)-1\big)\big(f(x)-3\big)}{f(x)}\leq 0 f(x)(f(x)−1)(f(x)−3)≤0
Opening the brakests ,we reduce
f ( x ) + 3 f ( x ) ≤ 4 f(x)+\frac{3}{f(x)}\leq4 f(x)+f(x)3≤4
and also because
∫ 0 1 f ( x ) d x ∫ 0 1 3 f ( x ) d x ≤ 1 4 ( ∫ 0 1 f ( x ) d x + ∫ 0 1 3 f ( x ) d x ) 2 \int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{3}{f(x)}\mathrm{d}x\leq \frac{1}{4}\bigg(\int_{0}^{1}f(x)\mathrm{d}x+\int_{0}^{1}\frac{3}{f(x)}\mathrm{d}x\bigg)^{2} ∫01f(x)dx∫01f(x)3dx≤41(∫01f(x)dx+∫01f(x)3dx)2
then we reduce
∫ 0 1 f ( x ) d x ∫ 0 1 1 f ( x ) d x ≤ 4 3 \int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{1}{f(x)}\mathrm{d}x\leq\frac{4}{3} ∫01f(x)dx∫01f(x)1dx≤34
so
1 ≤ ∫ 0 1 f ( x ) d x ∫ 0 1 1 f ( x ) d x ≤ 4 3 1\leq \int_{0}^{1}f(x)\mathrm{d}x\int_{0}^{1}\frac{1}{f(x)}\mathrm{d}x\leq \frac{4}{3} 1≤∫01f(x)dx∫01f(x)1dx≤34
Cauchy-Schwarz Inequality
https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality
The inequality for sums
was published by Augustin-Louis Cauchy
(1821), while the corresponding inequality for integrals was first proved by Viktor Bun-yakovsky
(1859) . Later the integral inequality was rediscovered by Hermann Ama-ndus Schwarz
(1888).
In Euclidean space R n R^{n} Rn with the standard inner product ,the Cauchy–Schwarz inequality
is
∑ k = 1 n ( a k b k ) 2 ≤ ( ∑ k = 1 n a k 2 ) ( ∑ k = 1 n b k 2 ) \sum_{k=1}^{n}\big(a_{k}b_{k}\big)^{2}\leq \big(\sum_{k=1}^{n}a_{k}^{2}\big)\big(\sum_{k=1}^{n}b_{k}^{2}\big) k=1∑n(akbk)2≤(k=1∑nak2)(k=1∑nbk2)
The Cauchy–Schwarz inequality
can be proved using only ideas from elemen-tary algebra in this case. Consider the following quadratic polynomial in t t t ,then
H ( t ) = ∑ k = 1 n ( a k t + b k ) 2 = ( a 1 t + b 1 ) 2 + ( a 2 t + b 2 ) 2 + ⋯ + ( a n t + b n ) 2 ≥ 0 H(t)=\sum_{k=1}^{n}\big(a_{k}t+b_{k}\big)^{2}=(a_{1}t+b_{1})^{2}+(a_{2}t+b_{2})^{2}+\cdots+(a_{n}t+b_{n})^{2}\geq0 H(t)=k=1∑n(akt+bk)2=(a1t+b1)2+(a2t+b2)2+⋯+(ant+bn)2≥0
which is
H ( t ) = ( ∑ k = 1 n a k 2 ) t 2 + 2 ( ∑ k = 1 n a k b k ) t + ∑ k = 1 n b k 2 H(t)=\big(\sum_{k=1}^{n}a_{k}^{2}\big)t^{2}+2\big(\sum_{k=1}^{n}a_{k}b_{k}\big)t+\sum_{k=1}^{n}b_{k}^{2} H(t)=(k=1∑nak2)t2+2(k=1∑nakbk)t+k=1∑nbk2
Discriminant Δ \Delta Δ is Less than or equal to 0 0 0,then organized
∑ k = 1 n ( a k b k ) 2 ≤ ( ∑ k = 1 n a k 2 ) ( ∑ k = 1 n b k 2 ) \sum_{k=1}^{n}\big(a_{k}b_{k}\big)^{2}\leq \big(\sum_{k=1}^{n}a_{k}^{2}\big)\big(\sum_{k=1}^{n}b_{k}^{2}\big) k=1∑n(akbk)2≤(k=1∑nak2)(k=1∑nbk2)
还有积分版the intergral inequality
Continuous version
If f f f and g g g was intergral
in [ a , b ] [a,b] [a,b] ,then
( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x \bigg(\int_{a}^{b}f(x)g(x)\mathrm{d}x\bigg)^{2}\leq\int_{a}^{b}f^{2}(x)\mathrm{d}x\int_{a}^{b}g^{2}(x)\mathrm{d}x (∫abf(x)g(x)dx)2≤∫abf2(x)dx∫abg2(x)dx
Proof 1: for all λ ∈ R \lambda \in R λ∈R , ( f ( x ) + λ g ( x ) ) 2 ≥ 0 \big(f(x) + \lambda g(x)\big)^{2}\geq0 (f(x)+λg(x))2≥0 ,reduce
∫ a b ( f ( x ) + λ g ( x ) ) 2 d x ≥ 0 \int_{a}^{b}\bigg(f\big(x\big)+\lambda g\big(x\big)\bigg)^{2}\mathrm{d}x\geq0 ∫ab(f(x)+λg(x))2dx≥0
Opening the brakests ,we reduce
λ 2 ∫ a b g 2 ( x ) d x + 2 λ ∫ a b f ( x ) g ( x ) d x + ∫ a b f 2 ( x ) d x ≥ 0 \lambda^{2}\int_{a}^{b}g^{2}(x)\mathrm{d}x+2\lambda \int_{a}^{b}f(x)g(x)\mathrm{d}x+\int_{a}^{b}f^{2}(x)\mathrm{d}x\geq0 λ2∫abg2(x)dx+2λ∫abf(x)g(x)dx+∫abf2(x)dx≥0
Discriminan Δ \Delta Δ is Less than or equal
to 0 0 0 ,then organized
( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x \bigg(\int_{a}^{b}f(x)g(x)\mathrm{d}x\bigg)^{2}\leq\int_{a}^{b}f^{2}(x)\mathrm{d}x\int_{a}^{b}g^{2}(x)\mathrm{d}x (∫abf(x)g(x)dx)2≤∫abf2(x)dx∫abg2(x)dx
Proof 2: we can make
F ( x ) = ∫ a x f 2 ( t ) d t ∫ a x g 2 ( t ) d t − ( ∫ a x f ( t ) g ( t ) d t ) 2 F(x)=\int_{a}^{x}f^{2}(t)\mathrm{d}t\int_{a}^{x}g^{2}(t)\mathrm{d}t-\bigg(\int_{a}^{x}f(t)g(t)\mathrm{d}t\bigg)^{2} F(x)=∫axf2(t)dt∫axg2(t)dt−(∫axf(t)g(t)dt)2
and F ( a ) = 0 F(a)=0 F(a)=0 ,derive it
F ′ ( x ) = g 2 ( x ) ∫ a x f 2 ( t ) d t + f 2 ( x ) ∫ a x g 2 ( t ) d t − 2 f ( x ) g ( x ) ∫ a x f ( t ) g ( t ) d t = ∫ a x ( f ( x ) g ( t ) − g ( x ) f ( t ) ) 2 d t ≥ 0 \begin{aligned} F^{'}(x)&=g^{2}(x)\int_{a}^{x}f^{2}(t)\mathrm{d}t+f^{2}(x)\int_{a}^{x}g^{2}(t)\mathrm{d}t-2f(x)g(x)\int_{a}^{x}f(t)g(t)\mathrm{d}t\\ &=\int_{a}^{x}\bigg(f(x)g(t)-g(x)f(t)\bigg)^{2}\mathrm{d}t\geq0 \end{aligned} F′(x)=g2(x)∫axf2(t)dt+f2(x)∫axg2(t)dt−2f(x)g(x)∫axf(t)g(t)dt=∫ax(f(x)g(t)−g(x)f(t))2dt≥0
so F ( a ) ≥ F ( a ) = 0 F(a)\geq F(a)=0 F(a)≥F(a)=0 ,which is
( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x \bigg(\int_{a}^{b}f(x)g(x)\mathrm{d}x\bigg)^{2}\leq\int_{a}^{b}f^{2}(x)\mathrm{d}x\int_{a}^{b}g^{2}(x)\mathrm{d}x (∫abf(x)g(x)dx)2≤∫abf2(x)dx∫abg2(x)dx
Inference 1: Minkowski inequality
https://en.wikipedia.org/wiki/Minkowski_inequality
In mathematical analysis ,the Minkowski inequality establishes that the Lp spa-ces are normed vector spaces. Let S be a measure space, let 1 ≤ ρ < ∞ 1\leq \rho <\infty 1≤ρ<∞ and let f f fand g g g be elements of L p ( s ) Lp(s) Lp(s). Then f + g f + g f+g is in L p ( s ) Lp(s) Lp(s) .
If f f f and g g g was intergral in [ a , b ] [a,b] [a,b] ,then
∫ a b ( f ( x ) + g ( x ) ) 2 d x ≤ ∫ a b f 2 ( x ) d x + ∫ a b g 2 ( x ) d x \sqrt{\int_{a}^{b}\bigg(f\big(x\big)+g\big(x\big)\bigg)^{2}\mathrm{d}x}\leq\sqrt{\int_{a}^{b}f^{2}(x)\mathrm{d}x}+\sqrt{\int_{a}^{b}g^{2}(x)\mathrm{d}x} ∫ab(f(x)+g(x))2dx≤∫abf2(x)dx+∫abg2(x)dx
Proof : by Cauchy-Schwarz inequality to get
∫ a b ( f ( x ) + g ( x ) ) 2 d x ≤ ∫ a b f 2 ( x ) d x + ∫ a b g 2 ( x ) d x + 2 ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x \int_{a}^{b}\bigg(f\big(x\big)+g\big(x\big)\bigg)^{2}\mathrm{d}x\leq \int_{a}^{b}f^{2}(x)\mathrm{d}x+\int_{a}^{b}g^{2}(x)\mathrm{d}x+2\sqrt{\int_{a}^{b}f^{2}(x)\mathrm{d}x\int_{a}^{b}g^{2}(x)\mathrm{d}x} ∫ab(f(x)+g(x))2dx≤∫abf2(x)dx+∫abg2(x)dx+2∫abf2(x)dx∫abg2(x)dx
then we reduce it .
Inference 2: Hölder’s inequality
https://en.wikipedia.org/wiki/H%C3%B6lder%27s_inequality
Discrete form
Sippose a k , b k > 0 ( k = 1 , 2 , ⋯ , n ) a_{k},b_{k}>0(k=1,2,\cdots,n) ak,bk>0(k=1,2,⋯,n) , p , q ≥ 1 p,q\geq1 p,q≥1 and 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 p1+q1=1 ,then
∑ k = 1 n a k b k ≤ ( ∑ k = 1 n a k p ) 1 p ( ∑ k = 1 n b k q ) 1 q \sum_{k=1}^{n}a_{k}b_{k}\leq\bigg(\sum_{k=1}^{n}a_{k}^{p}\bigg)^{\frac{1}{p}}\bigg(\sum_{k=1}^{n}b_{k}^{q}\bigg)^{\frac{1}{q}} k=1∑nakbk≤(k=1∑nakp)p1(k=1∑nbkq)q1
The inequality hold if a k a_{k} ak and only if is proportional to b k b_{k} bk.
Proof : use lemma Young's inequality
∑ k = 1 n a k b k ( ∑ k = 1 n a k p ) 1 p ( ∑ k = 1 n b k q ) 1 q = ∑ k = 1 n ( a k p ∑ k = 1 n a k p ) 1 p ( b k q ∑ k = 1 n b k q ) 1 q ≤ ∑ k = 1 n [ 1 p ( a k p ∑ k = 1 n a k p ) + ( 1 q b k q ∑ k = 1 n b k q ) ] = 1 p + 1 q \begin{aligned} \frac{\sum_{k=1}^{n}a_{k}b_{k}}{\big(\sum_{k=1}^{n}a_{k}^{p}\big)^{\frac{1}{p}}\big( \sum_{k=1}^{n}b_{k}^{q}\big)^{\frac{1}{q}}}&=\sum_{k=1}^{n}\bigg(\frac{a_{k}^{p}}{\sum_{k=1}^{n}a_{k}^{p}} \bigg)^{\frac{1}{p}}\bigg(\frac{b_{k}^{q}}{\sum_{k=1}^{n}b_{k}^{q}} \bigg)^{\frac{1}{q}}\\ &\leq \sum_{k=1}^{n}\bigg[ \frac{1}{p}\bigg(\frac{a_{k}^{p}}{\sum_{k=1}^{n}a_{k}^{p}} \bigg)+\bigg(\frac{1}{q}\frac{b_{k}^{q}}{\sum_{k=1}^{n}b_{k}^{q}} \bigg)\bigg]\\ &=\frac{1}{p}+\frac{1}{q} \end{aligned} (∑k=1nakp)p1(∑k=1nbkq)q1∑k=1nakbk=k=1∑n(∑k=1nakpakp)p1(∑k=1nbkqbkq)q1≤k=1∑n[p1(∑k=1nakpakp)+(q1∑k=1nbkqbkq)]=p1+q1
In mathematical analysis
,Hölder’s inequality ,named after Otto Hölde
,is a fundamental inequality between integrals
and an indispensable tool
for the study of L p Lp Lp spaces .
Continous version
If f f f and g g g was intergraled
in [ a , b ] [a,b] [a,b] ,and f ( X ) ≥ 0 f(X)\geq0 f(X)≥0 , g ( x ) ≥ 0 g(x)\geq0 g(x)≥0 ,then
∫ a b f ( x ) g ( x ) d x ≤ ( ∫ a b f p ( x ) d x ) 1 / p ( ∫ a b g q ( x ) d x ) 1 / q \int_{a}^{b}f(x)g(x)\mathrm{d}x\leq\bigg(\int_{a}^{b}f^{p}\big(x\big)\mathrm{d}x\bigg)^{1/p}\bigg(\int_{a}^{b}g^{q}\big(x\big)\mathrm{d}x\bigg)^{1/q} ∫abf(x)g(x)dx≤(∫abfp(x)dx)1/p(∫abgq(x)dx)1/q
among p , q ≥ 1 p,q\geq1 p,q≥1 ,and 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 p1+q1=1 .
先证一个重要引理Young’s inequality
lemma : Young’s inequality
https://en.wikipedia.org/wiki/Young%27s_inequality_for_products
In mathematics, Young’s inequality is a mathematical inequality about the pro-duct of two numbers .The inequality is named after William Henry Young
and should not be confused with Young's convolution inequation
.
Young's inequality
can be used to prove Hölder's inequality
. It is also wi-dely used to estimate the norm of nonlinear terms in PDE theory
,since it allows one to estimate a product of two terms by a sum of the same terms raised to a power and scaled .
In its standard form, the inequality states that if a a a and b b b are nonnegetive
real nu-mber and p p p and q q q are real numbers greater than
1 1 1 such that 1 p + 1 q = 1 \frac{1}{p}+ \frac{1}{q}=1 p1+q1=1, then
a b ≤ a p p + b q q ab\leq \frac{a^{p}}{p}+\frac{b^{q}}{q} ab≤pap+qbq
The inequality hold if and only if a p = b q a_{p}=b^{q} ap=bq .This form of Young's inequality
can be proved by Jensen’s inequality and can be used to prove Hölder’s inequality.
Proof : Because f ( x ) = e x f(x)=e^{x} f(x)=ex is an convex function ,that use Jensen's inequality
f ( ∑ i = 1 n λ i x i ) ≤ ∑ i = 1 n λ i f ( x i ) f(\sum_{i=1}^{n}\lambda_{i}x_{i})\leq\sum_{i=1}^{n}\lambda_{i}f(x_{i}) f(i=1∑nλixi)≤i=1∑nλif(xi)
among λ i > 0 \lambda_{i}>0 λi>0 ,and ∑ i λ i = 1 \sum_{i}\lambda_{i}=1 ∑iλi=1
i) while ab≠0
a b = e ln a e ln b = exp ( 1 p ln a p ) exp ( 1 q ln b q ) = exp ( 1 p ln a p + 1 q ln b q ) ≤ 1 p e ln a p + 1 q e ln b q = a p p + b q q \begin{aligned} ab&=e^{\ln a}e^{\ln b}=\exp\big(\frac{1}{p}\ln a^{p}\big)\exp\big(\frac{1}{q}\ln b^{q}\big)\\ &=\exp\big(\frac{1}{p}\ln a^{p}+\frac{1}{q}\ln b^{q}\big)\leq\frac{1}{p}e^{\ln a^{p}}+\frac{1}{q} e^{\ln b^{q}}\\ &=\frac{a^{p}}{p}+\frac{b^{q}}{q}\end{aligned} ab=elnaelnb=exp(p1lnap)exp(q1lnbq)=exp(p1lnap+q1lnbq)≤p1elnap+q1elnbq=pap+qbq
ii) whlie ab=0
Obviously there is a b ≤ a p p + b q q ab\leq \frac{a^{p}}{p}+\frac{b^{q}}{q} ab≤pap+qbq
Combining the foregoing i) and ii) .
Now we proof the Integral inequality using Young’s inequality
Proof : we make
m = f p ( x ) ∫ a b f p ( x ) d x , n = g q ( x ) ∫ a b g q ( x ) d x m=\frac{f^{p}(x)}{\int_{a}^{b}f^{p}(x)\mathrm{d}x} \ ,\ n=\frac{g^{q}(x)}{\int_{a}^{b}g^{q}(x)\mathrm{d}x} m=∫abfp(x)dxfp(x) , n=∫abgq(x)dxgq(x)
by Young’s inequality ,then we reduce
f p ( x ) ∫ a b f p ( x ) d x g q ( x ) ∫ a b g q ( x ) d x ≤ 1 p f p ( x ) ∫ a b f p ( x ) d x + 1 q g q ( x ) ∫ a b g q ( x ) d x \frac{f^{p}(x)}{\int_{a}^{b}f^{p}(x)\mathrm{d}x}\frac{g^{q}(x)}{\int_{a}^{b}g^{q}(x)\mathrm{d}x}\leq\frac{1}{p}\frac{f^{p}(x)}{\int_{a}^{b}f^{p}(x)\mathrm{d}x}+\frac{1}{q}\frac{g^{q}(x)}{\int_{a}^{b}g^{q}(x)\mathrm{d}x} ∫abfp(x)dxfp(x)∫abgq(x)dxgq(x)≤p1∫abfp(x)dxfp(x)+q1∫abgq(x)dxgq(x)
now integral for x left and right sides
∫ a b f ( x ) g ( x ) d x ≤ ( ∫ a b f p ( x ) d x ) 1 / p ( ∫ a b g q ( x ) d x ) 1 / q \int_{a}^{b}f(x)g(x)\mathrm{d}x\leq\bigg(\int_{a}^{b}f^{p}\big(x\big)\mathrm{d}x\bigg)^{1/p}\bigg(\int_{a}^{b}g^{q}\big(x\big)\mathrm{d}x\bigg)^{1/q} ∫abf(x)g(x)dx≤(∫abfp(x)dx)1/p(∫abgq(x)dx)1/q
The numbers p and q above are said to be Hölder conjugates of each other. The special case p=q=2 gives a form of the Cauchy-Schwarz inequality.
To be continued … …